| @@ -0,0 +1,614 @@ | |||
| curve_data = { | |||
| "Curve25519" : { | |||
| "iso_to" : "Curve25519", | |||
| "name" : "IsoEd25519", | |||
| "cxx_ns" : "IsoEd25519", | |||
| "short" : "255", | |||
| "c_ns" : "decaf_255", | |||
| "C_NS" : "DECAF_255", | |||
| "cofactor" : 8, | |||
| "modulus_type" : 5, | |||
| "bits" : 255 | |||
| }, | |||
| "Ed448" : { | |||
| "iso_to" : "Ed448-Goldilocks", | |||
| "name" : "Ed448-Goldilocks", | |||
| "cxx_ns" : "Ed448Goldilocks", | |||
| "short" : "448", | |||
| "c_ns" : "decaf_448", | |||
| "C_NS" : "DECAF_448", | |||
| "cofactor" : 4, | |||
| "modulus_type" : 3, | |||
| "bits" : 448 | |||
| } | |||
| } | |||
| header = """ | |||
| /** | |||
| * @file decaf/%(c_ns)s.hxx | |||
| * @author Mike Hamburg | |||
| * | |||
| * @copyright | |||
| * Copyright (c) 2015-2016 Cryptography Research, Inc. \\n | |||
| * Released under the MIT License. See LICENSE.txt for license information. | |||
| * | |||
| * @brief A group of prime order p, C++ wrapper. | |||
| * | |||
| * The Decaf library implements cryptographic operations on a an elliptic curve | |||
| * group of prime order p. It accomplishes this by using a twisted Edwards | |||
| * curve (isogenous to %(iso_to)s) and wiping out the cofactor. | |||
| * | |||
| * The formulas are all complete and have no special cases, except that | |||
| * %(c_ns)s_decode can fail because not every sequence of bytes is a valid group | |||
| * element. | |||
| * | |||
| * The formulas contain no data-dependent branches, timing or memory accesses, | |||
| * except for %(c_ns)s_base_double_scalarmul_non_secret. | |||
| */ | |||
| #ifndef __%(C_NS)s_HXX__ | |||
| #define __%(C_NS)s_HXX__ 1 | |||
| /** This code uses posix_memalign. */ | |||
| #ifndef _XOPEN_SOURCE | |||
| #define _XOPEN_SOURCE 600 | |||
| #endif | |||
| #include <stdlib.h> | |||
| #include <string.h> /* for memcpy */ | |||
| #include <decaf.h> | |||
| #include <decaf/secure_buffer.hxx> | |||
| #include <string> | |||
| #include <sys/types.h> | |||
| #include <limits.h> | |||
| /** @cond internal */ | |||
| #if __cplusplus >= 201103L | |||
| #define NOEXCEPT noexcept | |||
| #else | |||
| #define NOEXCEPT throw() | |||
| #endif | |||
| /** @endcond */ | |||
| namespace decaf { | |||
| /** | |||
| * @brief %(iso_to)s/Decaf instantiation of group. | |||
| */ | |||
| struct %(cxx_ns)s { | |||
| /** The name of the curve */ | |||
| static inline const char *name() { return "%(name)s"; } | |||
| /** The curve's cofactor (removed, but useful for testing) */ | |||
| static const int REMOVED_COFACTOR = %(cofactor)d; | |||
| /** Residue class of field modulus: p == this mod 2*(this-1) */ | |||
| static const int FIELD_MODULUS_TYPE = %(modulus_type)d; | |||
| /** @cond internal */ | |||
| class Point; | |||
| class Precomputed; | |||
| /** @endcond */ | |||
| /** | |||
| * @brief A scalar modulo the curve order. | |||
| * Supports the usual arithmetic operations, all in constant time. | |||
| */ | |||
| class Scalar : public Serializable<Scalar> { | |||
| private: | |||
| /** @brief wrapped C type */ | |||
| typedef %(c_ns)s_scalar_t Wrapped; | |||
| public: | |||
| /** @brief Size of a serialized element */ | |||
| static const size_t SER_BYTES = %(C_NS)s_SCALAR_BYTES; | |||
| /** @brief access to the underlying scalar object */ | |||
| Wrapped s; | |||
| /** @brief Don't initialize. */ | |||
| inline Scalar(const NOINIT &) NOEXCEPT {} | |||
| /** @brief Set to an unsigned word */ | |||
| inline Scalar(const decaf_word_t w) NOEXCEPT { *this = w; } | |||
| /** @brief Set to a signed word */ | |||
| inline Scalar(const int w) NOEXCEPT { *this = w; } | |||
| /** @brief Construct from RNG */ | |||
| inline explicit Scalar(Rng &rng) NOEXCEPT { | |||
| FixedArrayBuffer<SER_BYTES> sb(rng); | |||
| *this = sb; | |||
| } | |||
| /** @brief Construct from decaf_scalar_t object. */ | |||
| inline Scalar(const Wrapped &t = %(c_ns)s_scalar_zero) NOEXCEPT { %(c_ns)s_scalar_copy(s,t); } | |||
| /** @brief Copy constructor. */ | |||
| inline Scalar(const Scalar &x) NOEXCEPT { *this = x; } | |||
| /** @brief Construct from arbitrary-length little-endian byte sequence. */ | |||
| inline Scalar(const Block &buffer) NOEXCEPT { *this = buffer; } | |||
| /** @brief Serializable instance */ | |||
| inline size_t serSize() const NOEXCEPT { return SER_BYTES; } | |||
| /** @brief Serializable instance */ | |||
| inline void serializeInto(unsigned char *buffer) const NOEXCEPT { | |||
| %(c_ns)s_scalar_encode(buffer, s); | |||
| } | |||
| /** @brief Assignment. */ | |||
| inline Scalar& operator=(const Scalar &x) NOEXCEPT { %(c_ns)s_scalar_copy(s,x.s); return *this; } | |||
| /** @brief Assign from unsigned word. */ | |||
| inline Scalar& operator=(decaf_word_t w) NOEXCEPT { %(c_ns)s_scalar_set_unsigned(s,w); return *this; } | |||
| /** @brief Assign from signed int. */ | |||
| inline Scalar& operator=(int w) NOEXCEPT { | |||
| Scalar t(-(decaf_word_t)INT_MIN); | |||
| %(c_ns)s_scalar_set_unsigned(s,(decaf_word_t)w - (decaf_word_t)INT_MIN); | |||
| *this -= t; | |||
| return *this; | |||
| } | |||
| /** Destructor securely zeorizes the scalar. */ | |||
| inline ~Scalar() NOEXCEPT { %(c_ns)s_scalar_destroy(s); } | |||
| /** @brief Assign from arbitrary-length little-endian byte sequence in a Block. */ | |||
| inline Scalar &operator=(const Block &bl) NOEXCEPT { | |||
| %(c_ns)s_scalar_decode_long(s,bl.data(),bl.size()); return *this; | |||
| } | |||
| /** | |||
| * @brief Decode from correct-length little-endian byte sequence. | |||
| * @return DECAF_FAILURE if the scalar is greater than or equal to the group order q. | |||
| */ | |||
| static inline decaf_error_t __attribute__((warn_unused_result)) decode ( | |||
| Scalar &sc, const FixedBlock<SER_BYTES> buffer | |||
| ) NOEXCEPT { | |||
| return %(c_ns)s_scalar_decode(sc.s,buffer.data()); | |||
| } | |||
| /** Add. */ | |||
| inline Scalar operator+ (const Scalar &q) const NOEXCEPT { Scalar r((NOINIT())); %(c_ns)s_scalar_add(r.s,s,q.s); return r; } | |||
| /** Add to this. */ | |||
| inline Scalar &operator+=(const Scalar &q) NOEXCEPT { %(c_ns)s_scalar_add(s,s,q.s); return *this; } | |||
| /** Subtract. */ | |||
| inline Scalar operator- (const Scalar &q) const NOEXCEPT { Scalar r((NOINIT())); %(c_ns)s_scalar_sub(r.s,s,q.s); return r; } | |||
| /** Subtract from this. */ | |||
| inline Scalar &operator-=(const Scalar &q) NOEXCEPT { %(c_ns)s_scalar_sub(s,s,q.s); return *this; } | |||
| /** Multiply */ | |||
| inline Scalar operator* (const Scalar &q) const NOEXCEPT { Scalar r((NOINIT())); %(c_ns)s_scalar_mul(r.s,s,q.s); return r; } | |||
| /** Multiply into this. */ | |||
| inline Scalar &operator*=(const Scalar &q) NOEXCEPT { %(c_ns)s_scalar_mul(s,s,q.s); return *this; } | |||
| /** Negate */ | |||
| inline Scalar operator- () const NOEXCEPT { Scalar r((NOINIT())); %(c_ns)s_scalar_sub(r.s,%(c_ns)s_scalar_zero,s); return r; } | |||
| /** @brief Invert with Fermat's Little Theorem (slow!). If *this == 0, return 0. */ | |||
| inline Scalar inverse() const throw(CryptoException) { | |||
| Scalar r; | |||
| if (DECAF_SUCCESS != %(c_ns)s_scalar_invert(r.s,s)) { | |||
| throw CryptoException(); | |||
| } | |||
| return r; | |||
| } | |||
| /** @brief Divide by inverting q. If q == 0, return 0. */ | |||
| inline Scalar operator/ (const Scalar &q) const throw(CryptoException) { return *this * q.inverse(); } | |||
| /** @brief Divide by inverting q. If q == 0, return 0. */ | |||
| inline Scalar &operator/=(const Scalar &q) throw(CryptoException) { return *this *= q.inverse(); } | |||
| /** @brief Compare in constant time */ | |||
| inline bool operator!=(const Scalar &q) const NOEXCEPT { return !(*this == q); } | |||
| /** @brief Compare in constant time */ | |||
| inline bool operator==(const Scalar &q) const NOEXCEPT { return !!%(c_ns)s_scalar_eq(s,q.s); } | |||
| /** @brief Scalarmul with scalar on left. */ | |||
| inline Point operator* (const Point &q) const NOEXCEPT { return q * (*this); } | |||
| /** @brief Scalarmul-precomputed with scalar on left. */ | |||
| inline Point operator* (const Precomputed &q) const NOEXCEPT { return q * (*this); } | |||
| /** @brief Direct scalar multiplication. */ | |||
| inline SecureBuffer direct_scalarmul( | |||
| const Block &in, | |||
| decaf_bool_t allow_identity=DECAF_FALSE, | |||
| decaf_bool_t short_circuit=DECAF_TRUE | |||
| ) const throw(CryptoException); | |||
| }; | |||
| /** | |||
| * @brief Element of prime-order group. | |||
| */ | |||
| class Point : public Serializable<Point> { | |||
| private: | |||
| /** @brief wrapped C type */ | |||
| typedef %(c_ns)s_point_t Wrapped; | |||
| public: | |||
| /** @brief Size of a serialized element */ | |||
| static const size_t SER_BYTES = %(C_NS)s_SER_BYTES; | |||
| /** @brief Bytes required for hash */ | |||
| static const size_t HASH_BYTES = SER_BYTES; | |||
| /** @brief Size of a stegged element */ | |||
| static const size_t STEG_BYTES = HASH_BYTES * 2; | |||
| /** The c-level object. */ | |||
| Wrapped p; | |||
| /** @brief Don't initialize. */ | |||
| inline Point(const NOINIT &) NOEXCEPT {} | |||
| /** @brief Constructor sets to identity by default. */ | |||
| inline Point(const Wrapped &q = %(c_ns)s_point_identity) NOEXCEPT { %(c_ns)s_point_copy(p,q); } | |||
| /** @brief Copy constructor. */ | |||
| inline Point(const Point &q) NOEXCEPT { *this = q; } | |||
| /** @brief Assignment. */ | |||
| inline Point& operator=(const Point &q) NOEXCEPT { %(c_ns)s_point_copy(p,q.p); return *this; } | |||
| /** @brief Destructor securely zeorizes the point. */ | |||
| inline ~Point() NOEXCEPT { %(c_ns)s_point_destroy(p); } | |||
| /** @brief Construct from RNG */ | |||
| inline explicit Point(Rng &rng, bool uniform = true) NOEXCEPT { | |||
| if (uniform) { | |||
| FixedArrayBuffer<2*HASH_BYTES> b(rng); | |||
| set_to_hash(b); | |||
| } else { | |||
| FixedArrayBuffer<HASH_BYTES> b(rng); | |||
| set_to_hash(b); | |||
| } | |||
| } | |||
| /** | |||
| * @brief Initialize from a fixed-length byte string. | |||
| * The all-zero string maps to the identity. | |||
| * | |||
| * @throw CryptoException the string was the wrong length, or wasn't the encoding of a point, | |||
| * or was the identity and allow_identity was DECAF_FALSE. | |||
| */ | |||
| inline explicit Point(const FixedBlock<SER_BYTES> &buffer, decaf_bool_t allow_identity=DECAF_TRUE) | |||
| throw(CryptoException) { | |||
| if (DECAF_SUCCESS != decode(*this,buffer,allow_identity)) { | |||
| throw CryptoException(); | |||
| } | |||
| } | |||
| /** | |||
| * @brief Initialize from C++ fixed-length byte string. | |||
| * The all-zero string maps to the identity. | |||
| * | |||
| * @retval DECAF_SUCCESS the string was successfully decoded. | |||
| * @return DECAF_FAILURE the string was the wrong length, or wasn't the encoding of a point, | |||
| * or was the identity and allow_identity was DECAF_FALSE. Contents of the buffer are undefined. | |||
| */ | |||
| static inline decaf_error_t __attribute__((warn_unused_result)) decode ( | |||
| Point &p, const FixedBlock<SER_BYTES> &buffer, decaf_bool_t allow_identity=DECAF_TRUE | |||
| ) NOEXCEPT { | |||
| return %(c_ns)s_point_decode(p.p,buffer.data(),allow_identity); | |||
| } | |||
| /** | |||
| * @brief Map uniformly to the curve from a hash buffer. | |||
| * The empty or all-zero string maps to the identity, as does the string "\\x01". | |||
| * If the buffer is shorter than 2*HASH_BYTES, well, it won't be as uniform, | |||
| * but the buffer will be zero-padded on the right. | |||
| */ | |||
| static inline Point from_hash ( const Block &s ) NOEXCEPT { | |||
| Point p((NOINIT())); p.set_to_hash(s); return p; | |||
| } | |||
| /** | |||
| * @brief Map to the curve from a hash buffer. | |||
| * The empty or all-zero string maps to the identity, as does the string "\\x01". | |||
| * If the buffer is shorter than 2*HASH_BYTES, well, it won't be as uniform, | |||
| * but the buffer will be zero-padded on the right. | |||
| */ | |||
| inline void set_to_hash( const Block &s ) NOEXCEPT { | |||
| if (s.size() < HASH_BYTES) { | |||
| SecureBuffer b(HASH_BYTES); | |||
| memcpy(b.data(), s.data(), s.size()); | |||
| %(c_ns)s_point_from_hash_nonuniform(p,b.data()); | |||
| } else if (s.size() == HASH_BYTES) { | |||
| %(c_ns)s_point_from_hash_nonuniform(p,s.data()); | |||
| } else if (s.size() < 2*HASH_BYTES) { | |||
| SecureBuffer b(2*HASH_BYTES); | |||
| memcpy(b.data(), s.data(), s.size()); | |||
| %(c_ns)s_point_from_hash_uniform(p,b.data()); | |||
| } else { | |||
| %(c_ns)s_point_from_hash_uniform(p,s.data()); | |||
| } | |||
| } | |||
| /** | |||
| * @brief Encode to string. The identity encodes to the all-zero string. | |||
| */ | |||
| inline operator SecureBuffer() const { | |||
| SecureBuffer buffer(SER_BYTES); | |||
| %(c_ns)s_point_encode(buffer.data(), p); | |||
| return buffer; | |||
| } | |||
| /** @brief Serializable instance */ | |||
| inline size_t serSize() const NOEXCEPT { return SER_BYTES; } | |||
| /** @brief Serializable instance */ | |||
| inline void serializeInto(unsigned char *buffer) const NOEXCEPT { | |||
| %(c_ns)s_point_encode(buffer, p); | |||
| } | |||
| /** @brief Point add. */ | |||
| inline Point operator+ (const Point &q) const NOEXCEPT { Point r((NOINIT())); %(c_ns)s_point_add(r.p,p,q.p); return r; } | |||
| /** @brief Point add. */ | |||
| inline Point &operator+=(const Point &q) NOEXCEPT { %(c_ns)s_point_add(p,p,q.p); return *this; } | |||
| /** @brief Point subtract. */ | |||
| inline Point operator- (const Point &q) const NOEXCEPT { Point r((NOINIT())); %(c_ns)s_point_sub(r.p,p,q.p); return r; } | |||
| /** @brief Point subtract. */ | |||
| inline Point &operator-=(const Point &q) NOEXCEPT { %(c_ns)s_point_sub(p,p,q.p); return *this; } | |||
| /** @brief Point negate. */ | |||
| inline Point operator- () const NOEXCEPT { Point r((NOINIT())); %(c_ns)s_point_negate(r.p,p); return r; } | |||
| /** @brief Double the point out of place. */ | |||
| inline Point times_two () const NOEXCEPT { Point r((NOINIT())); %(c_ns)s_point_double(r.p,p); return r; } | |||
| /** @brief Double the point in place. */ | |||
| inline Point &double_in_place() NOEXCEPT { %(c_ns)s_point_double(p,p); return *this; } | |||
| /** @brief Constant-time compare. */ | |||
| inline bool operator!=(const Point &q) const NOEXCEPT { return ! %(c_ns)s_point_eq(p,q.p); } | |||
| /** @brief Constant-time compare. */ | |||
| inline bool operator==(const Point &q) const NOEXCEPT { return !!%(c_ns)s_point_eq(p,q.p); } | |||
| /** @brief Scalar multiply. */ | |||
| inline Point operator* (const Scalar &s) const NOEXCEPT { Point r((NOINIT())); %(c_ns)s_point_scalarmul(r.p,p,s.s); return r; } | |||
| /** @brief Scalar multiply in place. */ | |||
| inline Point &operator*=(const Scalar &s) NOEXCEPT { %(c_ns)s_point_scalarmul(p,p,s.s); return *this; } | |||
| /** @brief Multiply by s.inverse(). If s=0, maps to the identity. */ | |||
| inline Point operator/ (const Scalar &s) const throw(CryptoException) { return (*this) * s.inverse(); } | |||
| /** @brief Multiply by s.inverse(). If s=0, maps to the identity. */ | |||
| inline Point &operator/=(const Scalar &s) throw(CryptoException) { return (*this) *= s.inverse(); } | |||
| /** @brief Validate / sanity check */ | |||
| inline bool validate() const NOEXCEPT { return %(c_ns)s_point_valid(p); } | |||
| /** @brief Double-scalar multiply, equivalent to q*qs + r*rs but faster. */ | |||
| static inline Point double_scalarmul ( | |||
| const Point &q, const Scalar &qs, const Point &r, const Scalar &rs | |||
| ) NOEXCEPT { | |||
| Point p((NOINIT())); %(c_ns)s_point_double_scalarmul(p.p,q.p,qs.s,r.p,rs.s); return p; | |||
| } | |||
| /** @brief Dual-scalar multiply, equivalent to this*r1, this*r2 but faster. */ | |||
| inline void dual_scalarmul ( | |||
| Point &q1, Point &q2, const Scalar &r1, const Scalar &r2 | |||
| ) const NOEXCEPT { | |||
| %(c_ns)s_point_dual_scalarmul(q1.p,q2.p,p,r1.s,r2.s); | |||
| } | |||
| /** | |||
| * @brief Double-scalar multiply, equivalent to q*qs + r*rs but faster. | |||
| * For those who like their scalars before the point. | |||
| */ | |||
| static inline Point double_scalarmul ( | |||
| const Scalar &qs, const Point &q, const Scalar &rs, const Point &r | |||
| ) NOEXCEPT { | |||
| return double_scalarmul(q,qs,r,rs); | |||
| } | |||
| /** | |||
| * @brief Double-scalar multiply: this point by the first scalar and base by the second scalar. | |||
| * @warning This function takes variable time, and may leak the scalars (or points, but currently | |||
| * it doesn't). | |||
| */ | |||
| inline Point non_secret_combo_with_base(const Scalar &s, const Scalar &s_base) NOEXCEPT { | |||
| Point r((NOINIT())); %(c_ns)s_base_double_scalarmul_non_secret(r.p,s_base.s,p,s.s); return r; | |||
| } | |||
| /** @brief Return a point equal to *this, whose internal data is rotated by a torsion element. */ | |||
| inline Point debugging_torque() const NOEXCEPT { | |||
| Point q; | |||
| %(c_ns)s_point_debugging_torque(q.p,p); | |||
| return q; | |||
| } | |||
| /** @brief Return a point equal to *this, whose internal data has a modified representation. */ | |||
| inline Point debugging_pscale(const FixedBlock<SER_BYTES> factor) const NOEXCEPT { | |||
| Point q; | |||
| %(c_ns)s_point_debugging_pscale(q.p,p,factor.data()); | |||
| return q; | |||
| } | |||
| /** @brief Return a point equal to *this, whose internal data has a randomized representation. */ | |||
| inline Point debugging_pscale(Rng &r) const NOEXCEPT { | |||
| FixedArrayBuffer<SER_BYTES> sb(r); | |||
| return debugging_pscale(sb); | |||
| } | |||
| /** | |||
| * Modify buffer so that Point::from_hash(Buffer) == *this, and return DECAF_SUCCESS; | |||
| * or leave buf unmodified and return DECAF_FAILURE. | |||
| */ | |||
| inline decaf_error_t invert_elligator ( | |||
| Buffer buf, uint16_t hint | |||
| ) const NOEXCEPT { | |||
| unsigned char buf2[2*HASH_BYTES]; | |||
| memset(buf2,0,sizeof(buf2)); | |||
| memcpy(buf2,buf.data(),(buf.size() > 2*HASH_BYTES) ? 2*HASH_BYTES : buf.size()); | |||
| decaf_bool_t ret; | |||
| if (buf.size() > HASH_BYTES) { | |||
| ret = decaf_successful(%(c_ns)s_invert_elligator_uniform(buf2, p, hint)); | |||
| } else { | |||
| ret = decaf_successful(%(c_ns)s_invert_elligator_nonuniform(buf2, p, hint)); | |||
| } | |||
| if (buf.size() < HASH_BYTES) { | |||
| ret &= decaf_memeq(&buf2[buf.size()], &buf2[HASH_BYTES], HASH_BYTES - buf.size()); | |||
| } | |||
| if (ret) { | |||
| /* TODO: make this constant time?? */ | |||
| memcpy(buf.data(),buf2,(buf.size() < HASH_BYTES) ? buf.size() : HASH_BYTES); | |||
| } | |||
| decaf_bzero(buf2,sizeof(buf2)); | |||
| return decaf_succeed_if(ret); | |||
| } | |||
| /** @brief Steganographically encode this */ | |||
| inline SecureBuffer steg_encode(Rng &rng, size_t size=STEG_BYTES) const throw(std::bad_alloc, LengthException) { | |||
| if (size <= HASH_BYTES + 4 || size > 2*HASH_BYTES) throw LengthException(); | |||
| SecureBuffer out(STEG_BYTES); | |||
| decaf_error_t done; | |||
| do { | |||
| rng.read(Buffer(out).slice(HASH_BYTES-1,STEG_BYTES-HASH_BYTES+1)); | |||
| done = invert_elligator(out, out[HASH_BYTES-1]); | |||
| } while (!decaf_successful(done)); | |||
| return out; | |||
| } | |||
| /** @brief Return the base point */ | |||
| static inline const Point base() NOEXCEPT { return Point(%(c_ns)s_point_base); } | |||
| /** @brief Return the identity point */ | |||
| static inline const Point identity() NOEXCEPT { return Point(%(c_ns)s_point_identity); } | |||
| }; | |||
| /** | |||
| * @brief Precomputed table of points. | |||
| * Minor difficulties arise here because the decaf API doesn't expose, as a constant, how big such an object is. | |||
| * Therefore we have to call malloc() or friends, but that's probably for the best, because you don't want to | |||
| * stack-allocate a 15kiB object anyway. | |||
| */ | |||
| /** @cond internal */ | |||
| typedef %(c_ns)s_precomputed_s Precomputed_U; | |||
| /** @endcond */ | |||
| class Precomputed | |||
| /** @cond internal */ | |||
| : protected OwnedOrUnowned<Precomputed,Precomputed_U> | |||
| /** @endcond */ | |||
| { | |||
| public: | |||
| /** Destructor securely zeorizes the memory. */ | |||
| inline ~Precomputed() NOEXCEPT { clear(); } | |||
| /** | |||
| * @brief Initialize from underlying type, declared as a reference to prevent | |||
| * it from being called with 0, thereby breaking override. | |||
| * | |||
| * The underlying object must remain valid throughout the lifetime of this one. | |||
| * | |||
| * By default, initializes to the table for the base point. | |||
| * | |||
| * @warning The empty initializer makes this equal to base, unlike the empty | |||
| * initializer for points which makes this equal to the identity. | |||
| */ | |||
| inline Precomputed ( | |||
| const Precomputed_U &yours = *defaultValue() | |||
| ) NOEXCEPT : OwnedOrUnowned<Precomputed,Precomputed_U>(yours) {} | |||
| #if __cplusplus >= 201103L | |||
| /** @brief Move-assign operator */ | |||
| inline Precomputed &operator=(Precomputed &&it) NOEXCEPT { | |||
| OwnedOrUnowned<Precomputed,Precomputed_U>::operator= (it); | |||
| return *this; | |||
| } | |||
| /** @brief Move constructor */ | |||
| inline Precomputed(Precomputed &&it) NOEXCEPT : OwnedOrUnowned<Precomputed,Precomputed_U>() { | |||
| *this = it; | |||
| } | |||
| /** @brief Undelete copy operator */ | |||
| inline Precomputed &operator=(const Precomputed &it) NOEXCEPT { | |||
| OwnedOrUnowned<Precomputed,Precomputed_U>::operator= (it); | |||
| return *this; | |||
| } | |||
| #endif | |||
| /** | |||
| * @brief Initilaize from point. Must allocate memory, and may throw. | |||
| */ | |||
| inline Precomputed &operator=(const Point &it) throw(std::bad_alloc) { | |||
| alloc(); | |||
| %(c_ns)s_precompute(ours.mine,it.p); | |||
| return *this; | |||
| } | |||
| /** | |||
| * @brief Copy constructor. | |||
| */ | |||
| inline Precomputed(const Precomputed &it) throw(std::bad_alloc) | |||
| : OwnedOrUnowned<Precomputed,Precomputed_U>() { *this = it; } | |||
| /** | |||
| * @brief Constructor which initializes from point. | |||
| */ | |||
| inline explicit Precomputed(const Point &it) throw(std::bad_alloc) | |||
| : OwnedOrUnowned<Precomputed,Precomputed_U>() { *this = it; } | |||
| /** @brief Fixed base scalarmul. */ | |||
| inline Point operator* (const Scalar &s) const NOEXCEPT { Point r; %(c_ns)s_precomputed_scalarmul(r.p,get(),s.s); return r; } | |||
| /** @brief Multiply by s.inverse(). If s=0, maps to the identity. */ | |||
| inline Point operator/ (const Scalar &s) const throw(CryptoException) { return (*this) * s.inverse(); } | |||
| /** @brief Return the table for the base point. */ | |||
| static inline const Precomputed base() NOEXCEPT { return Precomputed(); } | |||
| public: | |||
| /** @cond internal */ | |||
| friend class OwnedOrUnowned<Precomputed,Precomputed_U>; | |||
| static inline size_t size() NOEXCEPT { return sizeof_%(c_ns)s_precomputed_s; } | |||
| static inline size_t alignment() NOEXCEPT { return alignof_%(c_ns)s_precomputed_s; } | |||
| static inline const Precomputed_U * defaultValue() NOEXCEPT { return %(c_ns)s_precomputed_base; } | |||
| /** @endcond */ | |||
| }; | |||
| }; /* struct %(cxx_ns)s */ | |||
| /** @cond internal */ | |||
| inline SecureBuffer %(cxx_ns)s::Scalar::direct_scalarmul ( | |||
| const Block &in, | |||
| decaf_bool_t allow_identity, | |||
| decaf_bool_t short_circuit | |||
| ) const throw(CryptoException) { | |||
| SecureBuffer out(%(cxx_ns)s::Point::SER_BYTES); | |||
| if (DECAF_SUCCESS != | |||
| %(c_ns)s_direct_scalarmul(out.data(), in.data(), s, allow_identity, short_circuit) | |||
| ) { | |||
| throw CryptoException(); | |||
| } | |||
| return out; | |||
| } | |||
| /** endcond */ | |||
| #undef NOEXCEPT | |||
| } /* namespace decaf */ | |||
| #endif /* __%(C_NS)s_HXX__ */ | |||
| """ | |||
| print header[1:-1] % curve_data["Ed448"] | |||