Browse Source

get the basic rs485 to cdc gateway working...

This follows the same protocol as the lora code, so the same
server should just work.
main
John-Mark Gurney 2 years ago
parent
commit
a3eb1e8b4d
15 changed files with 5737 additions and 11 deletions
  1. +31
    -0
      README.md
  2. +3
    -0
      RS485HID.md
  3. +12
    -0
      mk/boards.mk
  4. +1
    -0
      mk/mu.opts.mk
  5. +28
    -0
      mk/mu.progs.mk
  6. +1
    -0
      rs485hid/Makefile
  7. +243
    -0
      rs485hid/rs485frame.c
  8. +35
    -0
      rs485hid/rs485frame.h
  9. +97
    -11
      rs485hid/rs485gw.c
  10. +23
    -0
      si_usb.c
  11. +3
    -0
      stm32/.srcs
  12. +2
    -0
      stm32/f103c8t6/main.h
  13. +899
    -0
      stm32/f103c8t6/stm32f1xx_hal_dma.c
  14. +621
    -0
      stm32/f103c8t6/stm32f1xx_hal_pwr.c
  15. +3738
    -0
      stm32/f103c8t6/stm32f1xx_hal_uart.c

+ 31
- 0
README.md View File

@@ -16,4 +16,35 @@ Projects

[RS-485 USB HID KVM](RS485HID.md): USB Keyboard over RS-485

File Layout
-----------

Note that things are a mess as they stand right now. The first project
was based upon the SemTech reference code which implemented their own
HAL on top of ST's HAL which is partly implemented on top of ARM's HAL,
and in some cases bypasses them. It was also originally written not
expecting to be used for another board.

loramac/ - SemTech reference code. Has reference code for LoRa and the
Node151 based board.
mk/ - Files supporting the build infrastructure.
rs485hid/ - Files relating to the RS-485 HID project
stm32/ - This is the HAL for ST based parts. It comtains the ARM CMSIS
HAL as well, for the parts the ST chose to use.
strobe/ - Crypto code that form the basis of the protocol.

Options
-------

Default on:
STROBE - This contains all the cryptography parts.
SYSINIT - This contains the initalization frmae work, similar to FreeBSD.

Default off:
NODE151 - Code necessary for the Heltech Node151 module.
RS485FRAME - Code implementing framing tx/rx over RS-485.
STM32F103 - Code for a STM32F103 based board.
SX1276 - Code necessary for the LoRa Radio.
USB_CDC - Code for implementing a USB CDC Endpoint.

<!-- Markdeep: --><style class="fallback">body{visibility:hidden;white-space:pre;font-family:monospace}</style><script src="markdeep.min.js" charset="utf-8"></script><script src="https://casual-effects.com/markdeep/latest/markdeep.min.js" charset="utf-8"></script><script>window.alreadyProcessedMarkdeep||(document.body.style.visibility="visible")</script>

+ 3
- 0
RS485HID.md View File

@@ -22,6 +22,9 @@ These are the device that are under conideration for the project:

Currently looking at USART3, B0 for DE, B1 for RE.

TIM2_CH4 can be mapped to PB11 (UART3 RX). This is to do break detection.
Table 45 says TIM2_REMAP, either full or partial (value 1x).

Table 5 pin definitions of stm32f103c8.pdf
(all can be remapped)



+ 12
- 0
mk/boards.mk View File

@@ -52,15 +52,19 @@ ARMTARGET?= -mcpu=cortex-m3 -mthumb
LINKER_SCRIPT=$(STM32)/f103c8t6/STM32F103C8T6_FLASH.ld

SRCS+= \
misc.c \
hal_generic.c \
startup_stm32f103xb.s \
stm32f1xx_hal.c \
stm32f1xx_hal_cortex.c \
stm32f1xx_hal_dma.c \
stm32f1xx_hal_gpio.c \
stm32f1xx_hal_pcd.c \
stm32f1xx_hal_pcd_ex.c \
stm32f1xx_hal_pwr.c \
stm32f1xx_hal_rcc.c \
stm32f1xx_hal_rcc_ex.c \
stm32f1xx_hal_uart.c \
stm32f1xx_ll_usb.c \
system_stm32f1xx.c

@@ -108,6 +112,14 @@ CFLAGS+= -I$(STM32)/l151ccux
CFLAGS+= -DSTM32L151xC
.endif

# RS485 Framing
.if ${MK_RS485FRAME} == "yes"
SRCS+= \
rs485frame.c

CFLAGS+= -I$(SRCTOP)/rs485hid
.endif

# USB CDC
.if ${MK_USB_CDC} == "yes"
.PATH: $(STM32)/usb


+ 1
- 0
mk/mu.opts.mk View File

@@ -8,6 +8,7 @@ __DEFAULT_YES_OPTIONS = STROBE \

__DEFAULT_NO_OPTIONS = \
NODE151 \
RS485FRAME \
STM32F103 \
SX1276 \
USB_CDC


+ 28
- 0
mk/mu.progs.mk View File

@@ -1,3 +1,31 @@
# Copyright 2022 John-Mark Gurney.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#

.if $(.OBJDIR) == $(.CURDIR)
.error Need to set MAKEOBJDIR.
.endif

.MAIN: all
.PHONY: all



+ 1
- 0
rs485hid/Makefile View File

@@ -34,6 +34,7 @@ CFLAGS += -I$(.CURDIR)/..

WITH_STM32F103 = yes
WITH_USB_CDC = yes
WITH_RS485FRAME = yes

.include <../mk/boards.mk>



+ 243
- 0
rs485hid/rs485frame.c View File

@@ -0,0 +1,243 @@
/*
* Code to TX/RX RS-485 frames.
*
*/

#include <stdbool.h>
#include <sysinit.h>

#include <stm32f103xb.h>
#include <stm32f1xx_hal.h>
#include <stm32f1xx_hal_cortex.h>
#include <stm32f1xx_hal_dma.h>
#include <stm32f1xx_hal_rcc.h>
#include <stm32f1xx_hal_gpio.h>
#include <stm32f1xx_hal_uart.h>

#include <rs485frame.h>

const char *rs485err = NULL;

static uint8_t rxbuf[1024];
static txdone_fn_t txdone;
static rxdone_fn_t rxdone;
static txdone_fn_t errcb;

static int doingrx = 0;
static int doingtx = 0;

static UART_HandleTypeDef rs485uart;

/*
* Notes:
HAL_UARTEx_RxEventCallback rx evnts
* HAL_UART_TxCpltCallback tx_it completed
* HAL_UART_RxCpltCallback rx_it completed
* HAL_UART_ErrorCallback for errors
*/

void
USART3_IRQHandler(void)
{

HAL_UART_IRQHandler(&rs485uart);
}

void
rs485_register(txdone_fn_t txf, rxdone_fn_t rxf, txdone_fn_t errf)
{

txdone = txf;
rxdone = rxf;
errcb = errf;
}

static void
settx(bool tx)
{
GPIO_PinState s;

if (tx)
s = GPIO_PIN_SET;
else
s = GPIO_PIN_RESET;

HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, s);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, s);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, s);
}

void
rs485_starttx(uint8_t *pkt, size_t len)
{

/* XXX - make sure not tx'ing */
/* XXX - make sure line is idle */
if (doingrx) {
HAL_UART_AbortReceive_IT(&rs485uart);
}

settx(true);

HAL_UART_Transmit_IT(&rs485uart, pkt, len);
}

void
HAL_UART_ErrorCallback(UART_HandleTypeDef *phuart)
{

settx(false);
doingtx = 0;
doingrx = 0;
errcb();
}

void
HAL_UART_TxCpltCallback(UART_HandleTypeDef *phuart)
{

if (phuart != &rs485uart || txdone == NULL)
return;

settx(false);
doingtx = 0;

txdone();
}

void
HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
{
if (huart != &rs485uart || rxdone == NULL)
return;

doingrx = 0;

rxdone(rxbuf, Size);
}

/*
* Called when the buffer has been completed, i.e. it likely
* overflowed.
*/
void
HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{

if (huart != &rs485uart || rxdone == NULL)
return;

doingrx = 0;
rxdone(NULL, 0);
}

/* USE_HAL_UART_REGISTER_CALLBACKS defaults to 0, so use this */
void
HAL_UART_MspInit(UART_HandleTypeDef *huart)
{
GPIO_InitTypeDef GPIO_InitStruct;

/* UM1850 § 38.1.2 Page 550 */

/* 2.a */
__HAL_RCC_USART3_FORCE_RESET( );
__HAL_RCC_USART3_RELEASE_RESET( );
__HAL_RCC_USART3_CLK_ENABLE();

/* 2.b */
__HAL_RCC_GPIOB_CLK_ENABLE();
/* TX pin */
GPIO_InitStruct = (GPIO_InitTypeDef){
.Pin = GPIO_PIN_10,
.Mode = GPIO_MODE_AF_PP,
.Pull = GPIO_NOPULL,
.Speed = GPIO_SPEED_FREQ_LOW,
};
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* RX pin */
GPIO_InitStruct = (GPIO_InitTypeDef){
.Pin = GPIO_PIN_11,
.Mode = GPIO_MODE_AF_INPUT,
.Pull = GPIO_NOPULL,
.Speed = GPIO_SPEED_FREQ_LOW,
};
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

/* 2.c */
HAL_NVIC_SetPriority(USART3_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(USART3_IRQn);

/* 2.d */
/* DMA unused */
}

const char *
statustostr(HAL_StatusTypeDef r)
{

switch (r) {
case HAL_OK:
return "ok";
case HAL_ERROR:
return "error";
case HAL_BUSY:
return "busy";
default:
return "unknown";
}
}

int
rs485_startrx()
{
HAL_StatusTypeDef r;

if (doingtx) {
rs485err = "doingtx";
return 0;
}

r = HAL_UARTEx_ReceiveToIdle_IT(&rs485uart, rxbuf, sizeof rxbuf);
if (r == HAL_BUSY) {
HAL_UART_AbortReceive_IT(&rs485uart);
r = HAL_UARTEx_ReceiveToIdle_IT(&rs485uart, rxbuf, sizeof rxbuf);
}

rs485err = statustostr(r);

return r == HAL_OK;
}

static void
rs485frame_init(const void *v)
{
GPIO_InitTypeDef GPIO_InitStruct;

/* setup DE/RE */
GPIO_InitStruct = (GPIO_InitTypeDef){
.Pin = GPIO_PIN_0|GPIO_PIN_1,
.Mode = GPIO_MODE_OUTPUT_OD,
.Pull = GPIO_NOPULL,
.Speed = GPIO_SPEED_FREQ_LOW, /* 2 MHz */
};
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

/* switch to RX */
settx(false);

/* UM1850 § 38.1.2 Page 550 */
/* 3 */
rs485uart = (UART_HandleTypeDef){
.Init.BaudRate = 230400,
.Init.WordLength = UART_WORDLENGTH_8B,
.Init.StopBits = UART_STOPBITS_1,
.Init.Parity = UART_PARITY_NONE,
.Init.HwFlowCtl = UART_HWCONTROL_NONE,
.Init.Mode = UART_MODE_TX_RX,
.Instance = USART3,
};

/* 4 */
HAL_UART_Init(&rs485uart);
}
SYSINIT(rs485frame_init, SI_SUB_STANDARD, SI_ORDER_FIRST, rs485frame_init, NULL);

+ 35
- 0
rs485hid/rs485frame.h View File

@@ -0,0 +1,35 @@
/*-
* Copyright 2022 John-Mark Gurney.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/

extern const char *rs485err;

typedef void (*txdone_fn_t)(void);
typedef void (*rxdone_fn_t)(const uint8_t *pkt, size_t len);

void rs485_register(txdone_fn_t, rxdone_fn_t, txdone_fn_t errcb);

void rs485_starttx(uint8_t *pkt, size_t len);
int rs485_startrx();

+ 97
- 11
rs485hid/rs485gw.c View File

@@ -26,6 +26,8 @@

#include <si_usb.h>

#include <rs485frame.h>

#include <misc.h>

#include <stdbool.h>
@@ -36,6 +38,14 @@

SYSINIT(hal_init, SI_SUB_HAL, SI_ORDER_FIRST, (void (*)(const void *))HAL_Init, NULL);

static int dorx = 0;
static uint8_t rxbuf[128];
static int gotrxdone = 0;
static int gottxdone = 0;
static int goterr = 0;
static int rxbufsize = 0;
static int rxbuftrunc = 0;

static void
c13led(const void *none)
{
@@ -56,6 +66,11 @@ c13led(const void *none)
}
SYSINIT(c13led, SI_SUB_HAL, SI_ORDER_SECOND, c13led, NULL);

#if 0
#undef usb_printf
#define usb_printf debug_printf
#endif

/*
* Referenced from:
* Projects/STM32F103RB-Nucleo/Applications/USB_Device/HID_Standalone/Src/main.c
@@ -128,24 +143,28 @@ void
txdone(void)
{

usb_printf("txdone\r\n");
//Radio.Rx(0);
gottxdone = 1;
}

void
txtimeout(void)
errfunc(void)
{

usb_printf("txtimeout\r\n");
goterr = 1;
}

void
rxdone(uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr)
rxdone(const uint8_t *payload, size_t size)
{

usb_printf("rxdone: size: %hu, rssi: %hd, snr: %d\r\ndata: ", size, rssi, snr);
hexdump(payload, size);
usb_printf("\r\n");
if (size > sizeof rxbuf) {
size = sizeof rxbuf;
rxbuftrunc = 1;
}

memcpy(rxbuf, payload, size);
rxbufsize = size;
gotrxdone = 1;
}

void
@@ -235,20 +254,29 @@ process_line(char *start, char *end)
usb_printf("invalid pkt\r\n");
return;
}
//Radio.Send(pktbuf, len / 2);
rs485_starttx(pktbuf, len / 2);
return;
}
usb_printf("line: %.*s", end - start, start);
fflush(vcp_usb);
}

static void
WaitForIRQ()
{

__disable_irq();
HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI);
__enable_irq( );
}

int
main(void)
{

sysinit_run();

//debug_printf("starting...\n");
debug_printf("starting...\n");

#if 1
int i;
@@ -281,8 +309,66 @@ main(void)
int inpbufpos = 0;
int cpylen;

rs485_register(txdone, rxdone, errfunc);

rs485_startrx();

unsigned lasttick = -1;
uint32_t gt;
loop:
//BoardLowPowerHandler();
/*
* This is disabled as when it's enabled, it causes a hang
* when sending USB data. The USB CDC end point never becomes
* unbusy to allow the next send to progress.
*/
#if 0
/*
* A ms delay isn't a big deal, so no special locking is
* used to make sure we don't got to sleep w/ data pending.
*/
WaitForIRQ();
#else
(void)WaitForIRQ;
#endif

gt = HAL_GetTick();
if (lasttick != gt / 1000) {
lasttick = gt / 1000;
//usb_printf("tick: %u\r\n", lasttick);
}

if (goterr) {
//usb_printf("error\r\n");
goterr = 0;
dorx = 1;
}

if (gottxdone) {
usb_printf("txdone\r\n");

dorx = 1;
gottxdone = 0;
}

if (gotrxdone) {
if (rxbuftrunc) {
rxbuftrunc = 0;
//usb_printf("rxdone: buffer overflow\r\n");
} else {
usb_printf("rxdone: size: %u\r\ndata: ", rxbufsize);
hexdump(rxbuf, rxbufsize);
usb_printf("\r\n");
}
dorx = 1;
gotrxdone = 0;
}

if (dorx) {
//usb_printf("dorx\r\n");
rs485_startrx();
//usb_printf("startrx res: %s\r\n", rs485err);
dorx = 0;
}

/* while we have data */
while (CDC_RX_LEN) {


+ 23
- 0
si_usb.c View File

@@ -4,11 +4,34 @@

#include <sysinit.h>

#include <stm32f1xx_hal_gpio.h>
#include <stm32f1xx_hal_pcd.h>

#include <usb_device.h>

static void
usb_cdc_init(const void *foo)
{
/*
* pretend that the device was newly plugged in
* see: https://stackoverflow.com/a/67336535
*/

GPIO_InitTypeDef GPIO_InitStructure;

GPIO_InitStructure = (GPIO_InitTypeDef){
.Pin = GPIO_PIN_11|GPIO_PIN_12,
.Mode = GPIO_MODE_OUTPUT_PP,
.Pull = GPIO_PULLDOWN,
.Speed = GPIO_SPEED_HIGH,
};

__HAL_RCC_GPIOA_CLK_ENABLE();
HAL_GPIO_Init(GPIOA, &GPIO_InitStructure);
//HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12, GPIO_PIN_RESET);

HAL_Delay(10);

MX_USB_DEVICE_Init();
}


+ 3
- 0
stm32/.srcs View File

@@ -14,12 +14,14 @@ f103c8t6/stm32f1xx_hal_adc.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f
f103c8t6/stm32f1xx_hal_adc_ex.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc_ex.h
f103c8t6/stm32f1xx_hal_cortex.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_cortex.h
f103c8t6/stm32f1xx_hal_def.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_def.h
f103c8t6/stm32f1xx_hal_dma.c STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c
f103c8t6/stm32f1xx_hal_dma.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma.h
f103c8t6/stm32f1xx_hal_dma_ex.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma_ex.h
f103c8t6/stm32f1xx_hal_flash.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash.h
f103c8t6/stm32f1xx_hal_flash_ex.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash_ex.h
f103c8t6/stm32f1xx_hal_gpio.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio.h
f103c8t6/stm32f1xx_hal_gpio_ex.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio_ex.h
f103c8t6/stm32f1xx_hal_pwr.c STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c
f103c8t6/stm32f1xx_hal_pwr.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_pwr.h
f103c8t6/stm32f1xx_hal_pcd.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_pcd.h
f103c8t6/stm32f1xx_hal_pcd_ex.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_pcd_ex.h
@@ -29,5 +31,6 @@ f103c8t6/stm32f1xx_hal_rcc_ex.c STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Src/stm
f103c8t6/stm32f1xx_hal_rcc_ex.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc_ex.h
f103c8t6/stm32f1xx_hal_rtc.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rtc.h
f103c8t6/stm32f1xx_hal_rtc_ex.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rtc_ex.h
f103c8t6/stm32f1xx_hal_uart.c STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_uart.c
f103c8t6/stm32f1xx_hal_uart.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_uart.h
f103c8t6/stm32f1xx_ll_usb.h STM32CubeF1 Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_ll_usb.h

+ 2
- 0
stm32/f103c8t6/main.h View File

@@ -3,4 +3,6 @@

#include "stm32f1xx_hal.h"

void Error_Handler(void);

#endif /* _MAIN_H_ */

+ 899
- 0
stm32/f103c8t6/stm32f1xx_hal_dma.c View File

@@ -0,0 +1,899 @@
/**
******************************************************************************
* @file stm32f1xx_hal_dma.c
* @author MCD Application Team
* @brief DMA HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Direct Memory Access (DMA) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral State and errors functions
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) Enable and configure the peripheral to be connected to the DMA Channel
(except for internal SRAM / FLASH memories: no initialization is
necessary). Please refer to the Reference manual for connection between peripherals
and DMA requests.

(#) For a given Channel, program the required configuration through the following parameters:
Channel request, Transfer Direction, Source and Destination data formats,
Circular or Normal mode, Channel Priority level, Source and Destination Increment mode
using HAL_DMA_Init() function.

(#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error
detection.
(#) Use HAL_DMA_Abort() function to abort the current transfer
-@- In Memory-to-Memory transfer mode, Circular mode is not allowed.
*** Polling mode IO operation ***
=================================
[..]
(+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source
address and destination address and the Length of data to be transferred
(+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this
case a fixed Timeout can be configured by User depending from his application.

*** Interrupt mode IO operation ***
===================================
[..]
(+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority()
(+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ()
(+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of
Source address and destination address and the Length of data to be transferred.
In this case the DMA interrupt is configured
(+) Use HAL_DMA_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine
(+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can
add his own function by customization of function pointer XferCpltCallback and
XferErrorCallback (i.e. a member of DMA handle structure).

*** DMA HAL driver macros list ***
=============================================
[..]
Below the list of most used macros in DMA HAL driver.

(+) __HAL_DMA_ENABLE: Enable the specified DMA Channel.
(+) __HAL_DMA_DISABLE: Disable the specified DMA Channel.
(+) __HAL_DMA_GET_FLAG: Get the DMA Channel pending flags.
(+) __HAL_DMA_CLEAR_FLAG: Clear the DMA Channel pending flags.
(+) __HAL_DMA_ENABLE_IT: Enable the specified DMA Channel interrupts.
(+) __HAL_DMA_DISABLE_IT: Disable the specified DMA Channel interrupts.
(+) __HAL_DMA_GET_IT_SOURCE: Check whether the specified DMA Channel interrupt has occurred or not.

[..]
(@) You can refer to the DMA HAL driver header file for more useful macros

@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/

/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"

/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/

/** @defgroup DMA DMA
* @brief DMA HAL module driver
* @{
*/

#ifdef HAL_DMA_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup DMA_Private_Functions DMA Private Functions
* @{
*/
static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
/**
* @}
*/

/* Exported functions ---------------------------------------------------------*/

/** @defgroup DMA_Exported_Functions DMA Exported Functions
* @{
*/

/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
This section provides functions allowing to initialize the DMA Channel source
and destination addresses, incrementation and data sizes, transfer direction,
circular/normal mode selection, memory-to-memory mode selection and Channel priority value.
[..]
The HAL_DMA_Init() function follows the DMA configuration procedures as described in
reference manual.

@endverbatim
* @{
*/

/**
* @brief Initialize the DMA according to the specified
* parameters in the DMA_InitTypeDef and initialize the associated handle.
* @param hdma: Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma)
{
uint32_t tmp = 0U;

/* Check the DMA handle allocation */
if(hdma == NULL)
{
return HAL_ERROR;
}

/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
assert_param(IS_DMA_DIRECTION(hdma->Init.Direction));
assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc));
assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc));
assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment));
assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment));
assert_param(IS_DMA_MODE(hdma->Init.Mode));
assert_param(IS_DMA_PRIORITY(hdma->Init.Priority));

#if defined (DMA2)
/* calculation of the channel index */
if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1))
{
/* DMA1 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
hdma->DmaBaseAddress = DMA1;
}
else
{
/* DMA2 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2;
hdma->DmaBaseAddress = DMA2;
}
#else
/* DMA1 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
hdma->DmaBaseAddress = DMA1;
#endif /* DMA2 */

/* Change DMA peripheral state */
hdma->State = HAL_DMA_STATE_BUSY;

/* Get the CR register value */
tmp = hdma->Instance->CCR;

/* Clear PL, MSIZE, PSIZE, MINC, PINC, CIRC and DIR bits */
tmp &= ((uint32_t)~(DMA_CCR_PL | DMA_CCR_MSIZE | DMA_CCR_PSIZE | \
DMA_CCR_MINC | DMA_CCR_PINC | DMA_CCR_CIRC | \
DMA_CCR_DIR));

/* Prepare the DMA Channel configuration */
tmp |= hdma->Init.Direction |
hdma->Init.PeriphInc | hdma->Init.MemInc |
hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment |
hdma->Init.Mode | hdma->Init.Priority;

/* Write to DMA Channel CR register */
hdma->Instance->CCR = tmp;

/* Initialise the error code */
hdma->ErrorCode = HAL_DMA_ERROR_NONE;

/* Initialize the DMA state*/
hdma->State = HAL_DMA_STATE_READY;
/* Allocate lock resource and initialize it */
hdma->Lock = HAL_UNLOCKED;

return HAL_OK;
}

/**
* @brief DeInitialize the DMA peripheral.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma)
{
/* Check the DMA handle allocation */
if(hdma == NULL)
{
return HAL_ERROR;
}

/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));

/* Disable the selected DMA Channelx */
__HAL_DMA_DISABLE(hdma);

/* Reset DMA Channel control register */
hdma->Instance->CCR = 0U;

/* Reset DMA Channel Number of Data to Transfer register */
hdma->Instance->CNDTR = 0U;

/* Reset DMA Channel peripheral address register */
hdma->Instance->CPAR = 0U;

/* Reset DMA Channel memory address register */
hdma->Instance->CMAR = 0U;

#if defined (DMA2)
/* calculation of the channel index */
if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1))
{
/* DMA1 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
hdma->DmaBaseAddress = DMA1;
}
else
{
/* DMA2 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2;
hdma->DmaBaseAddress = DMA2;
}
#else
/* DMA1 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2;
hdma->DmaBaseAddress = DMA1;
#endif /* DMA2 */

/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex));

/* Clean all callbacks */
hdma->XferCpltCallback = NULL;
hdma->XferHalfCpltCallback = NULL;
hdma->XferErrorCallback = NULL;
hdma->XferAbortCallback = NULL;

/* Reset the error code */
hdma->ErrorCode = HAL_DMA_ERROR_NONE;

/* Reset the DMA state */
hdma->State = HAL_DMA_STATE_RESET;

/* Release Lock */
__HAL_UNLOCK(hdma);

return HAL_OK;
}

/**
* @}
*/

/** @defgroup DMA_Exported_Functions_Group2 Input and Output operation functions
* @brief Input and Output operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure the source, destination address and data length and Start DMA transfer
(+) Configure the source, destination address and data length and
Start DMA transfer with interrupt
(+) Abort DMA transfer
(+) Poll for transfer complete
(+) Handle DMA interrupt request

@endverbatim
* @{
*/

/**
* @brief Start the DMA Transfer.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param SrcAddress: The source memory Buffer address
* @param DstAddress: The destination memory Buffer address
* @param DataLength: The length of data to be transferred from source to destination
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;

/* Check the parameters */
assert_param(IS_DMA_BUFFER_SIZE(DataLength));

/* Process locked */
__HAL_LOCK(hdma);

if(HAL_DMA_STATE_READY == hdma->State)
{
/* Change DMA peripheral state */
hdma->State = HAL_DMA_STATE_BUSY;
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
/* Disable the peripheral */
__HAL_DMA_DISABLE(hdma);
/* Configure the source, destination address and the data length & clear flags*/
DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
/* Enable the Peripheral */
__HAL_DMA_ENABLE(hdma);
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hdma);
status = HAL_BUSY;
}
return status;
}

/**
* @brief Start the DMA Transfer with interrupt enabled.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param SrcAddress: The source memory Buffer address
* @param DstAddress: The destination memory Buffer address
* @param DataLength: The length of data to be transferred from source to destination
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;

/* Check the parameters */
assert_param(IS_DMA_BUFFER_SIZE(DataLength));

/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
/* Change DMA peripheral state */
hdma->State = HAL_DMA_STATE_BUSY;
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
/* Disable the peripheral */
__HAL_DMA_DISABLE(hdma);
/* Configure the source, destination address and the data length & clear flags*/
DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
/* Enable the transfer complete interrupt */
/* Enable the transfer Error interrupt */
if(NULL != hdma->XferHalfCpltCallback)
{
/* Enable the Half transfer complete interrupt as well */
__HAL_DMA_ENABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));
}
else
{
__HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT);
__HAL_DMA_ENABLE_IT(hdma, (DMA_IT_TC | DMA_IT_TE));
}
/* Enable the Peripheral */
__HAL_DMA_ENABLE(hdma);
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hdma);

/* Remain BUSY */
status = HAL_BUSY;
}
return status;
}

/**
* @brief Abort the DMA Transfer.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma)
{
HAL_StatusTypeDef status = HAL_OK;
if(hdma->State != HAL_DMA_STATE_BUSY)
{
/* no transfer ongoing */
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
return HAL_ERROR;
}
else

{
/* Disable DMA IT */
__HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));
/* Disable the channel */
__HAL_DMA_DISABLE(hdma);
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);
}
/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;

/* Process Unlocked */
__HAL_UNLOCK(hdma);
return status;
}

/**
* @brief Aborts the DMA Transfer in Interrupt mode.
* @param hdma : pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma)
{
HAL_StatusTypeDef status = HAL_OK;
if(HAL_DMA_STATE_BUSY != hdma->State)
{
/* no transfer ongoing */
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
status = HAL_ERROR;
}
else
{
/* Disable DMA IT */
__HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));

/* Disable the channel */
__HAL_DMA_DISABLE(hdma);

/* Clear all flags */
__HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_GI_FLAG_INDEX(hdma));

/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;

/* Process Unlocked */
__HAL_UNLOCK(hdma);

/* Call User Abort callback */
if(hdma->XferAbortCallback != NULL)
{
hdma->XferAbortCallback(hdma);
}
}
return status;
}

/**
* @brief Polling for transfer complete.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param CompleteLevel: Specifies the DMA level complete.
* @param Timeout: Timeout duration.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout)
{
uint32_t temp;
uint32_t tickstart = 0U;

if(HAL_DMA_STATE_BUSY != hdma->State)
{
/* no transfer ongoing */
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
__HAL_UNLOCK(hdma);
return HAL_ERROR;
}

/* Polling mode not supported in circular mode */
if (RESET != (hdma->Instance->CCR & DMA_CCR_CIRC))
{
hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
/* Get the level transfer complete flag */
if(CompleteLevel == HAL_DMA_FULL_TRANSFER)
{
/* Transfer Complete flag */
temp = __HAL_DMA_GET_TC_FLAG_INDEX(hdma);
}
else
{
/* Half Transfer Complete flag */
temp = __HAL_DMA_GET_HT_FLAG_INDEX(hdma);
}

/* Get tick */
tickstart = HAL_GetTick();

while(__HAL_DMA_GET_FLAG(hdma, temp) == RESET)
{
if((__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)) != RESET))
{
/* When a DMA transfer error occurs */
/* A hardware clear of its EN bits is performed */
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);

/* Update error code */
SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TE);

/* Change the DMA state */
hdma->State= HAL_DMA_STATE_READY;

/* Process Unlocked */
__HAL_UNLOCK(hdma);

return HAL_ERROR;
}
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
{
/* Update error code */
SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TIMEOUT);

/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;

/* Process Unlocked */
__HAL_UNLOCK(hdma);

return HAL_ERROR;
}
}
}

if(CompleteLevel == HAL_DMA_FULL_TRANSFER)
{
/* Clear the transfer complete flag */
__HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));

/* The selected Channelx EN bit is cleared (DMA is disabled and
all transfers are complete) */
hdma->State = HAL_DMA_STATE_READY;
}
else
{
/* Clear the half transfer complete flag */
__HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
}
/* Process unlocked */
__HAL_UNLOCK(hdma);

return HAL_OK;
}

/**
* @brief Handles DMA interrupt request.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval None
*/
void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma)
{
uint32_t flag_it = hdma->DmaBaseAddress->ISR;
uint32_t source_it = hdma->Instance->CCR;
/* Half Transfer Complete Interrupt management ******************************/
if (((flag_it & (DMA_FLAG_HT1 << hdma->ChannelIndex)) != RESET) && ((source_it & DMA_IT_HT) != RESET))
{
/* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */
if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
{
/* Disable the half transfer interrupt */
__HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT);
}
/* Clear the half transfer complete flag */
__HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));

/* DMA peripheral state is not updated in Half Transfer */
/* but in Transfer Complete case */

if(hdma->XferHalfCpltCallback != NULL)
{
/* Half transfer callback */
hdma->XferHalfCpltCallback(hdma);
}
}

/* Transfer Complete Interrupt management ***********************************/
else if (((flag_it & (DMA_FLAG_TC1 << hdma->ChannelIndex)) != RESET) && ((source_it & DMA_IT_TC) != RESET))
{
if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
{
/* Disable the transfer complete and error interrupt */
__HAL_DMA_DISABLE_IT(hdma, DMA_IT_TE | DMA_IT_TC);

/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;
}
/* Clear the transfer complete flag */
__HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));

/* Process Unlocked */
__HAL_UNLOCK(hdma);

if(hdma->XferCpltCallback != NULL)
{
/* Transfer complete callback */
hdma->XferCpltCallback(hdma);
}
}

/* Transfer Error Interrupt management **************************************/
else if (( RESET != (flag_it & (DMA_FLAG_TE1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_TE)))
{
/* When a DMA transfer error occurs */
/* A hardware clear of its EN bits is performed */
/* Disable ALL DMA IT */
__HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE));

/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);

/* Update error code */
hdma->ErrorCode = HAL_DMA_ERROR_TE;

/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;

/* Process Unlocked */
__HAL_UNLOCK(hdma);

if (hdma->XferErrorCallback != NULL)
{
/* Transfer error callback */
hdma->XferErrorCallback(hdma);
}
}
return;
}

/**
* @brief Register callbacks
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param CallbackID: User Callback identifer
* a HAL_DMA_CallbackIDTypeDef ENUM as parameter.
* @param pCallback: pointer to private callbacsk function which has pointer to
* a DMA_HandleTypeDef structure as parameter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)( DMA_HandleTypeDef * _hdma))
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
switch (CallbackID)
{
case HAL_DMA_XFER_CPLT_CB_ID:
hdma->XferCpltCallback = pCallback;
break;
case HAL_DMA_XFER_HALFCPLT_CB_ID:
hdma->XferHalfCpltCallback = pCallback;
break;

case HAL_DMA_XFER_ERROR_CB_ID:
hdma->XferErrorCallback = pCallback;
break;
case HAL_DMA_XFER_ABORT_CB_ID:
hdma->XferAbortCallback = pCallback;
break;
default:
status = HAL_ERROR;
break;
}
}
else
{
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hdma);
return status;
}

/**
* @brief UnRegister callbacks
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param CallbackID: User Callback identifer
* a HAL_DMA_CallbackIDTypeDef ENUM as parameter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;

/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
switch (CallbackID)
{
case HAL_DMA_XFER_CPLT_CB_ID:
hdma->XferCpltCallback = NULL;
break;

case HAL_DMA_XFER_HALFCPLT_CB_ID:
hdma->XferHalfCpltCallback = NULL;
break;

case HAL_DMA_XFER_ERROR_CB_ID:
hdma->XferErrorCallback = NULL;
break;

case HAL_DMA_XFER_ABORT_CB_ID:
hdma->XferAbortCallback = NULL;
break;

case HAL_DMA_XFER_ALL_CB_ID:
hdma->XferCpltCallback = NULL;
hdma->XferHalfCpltCallback = NULL;
hdma->XferErrorCallback = NULL;
hdma->XferAbortCallback = NULL;
break;

default:
status = HAL_ERROR;
break;
}
}
else
{
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hdma);
return status;
}
/**
* @}
*/

/** @defgroup DMA_Exported_Functions_Group3 Peripheral State and Errors functions
* @brief Peripheral State and Errors functions
*
@verbatim
===============================================================================
##### Peripheral State and Errors functions #####
===============================================================================
[..]
This subsection provides functions allowing to
(+) Check the DMA state
(+) Get error code

@endverbatim
* @{
*/

/**
* @brief Return the DMA hande state.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL state
*/
HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma)
{
/* Return DMA handle state */
return hdma->State;
}

/**
* @brief Return the DMA error code.
* @param hdma : pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval DMA Error Code
*/
uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma)
{
return hdma->ErrorCode;
}

/**
* @}
*/

/**
* @}
*/

/** @addtogroup DMA_Private_Functions
* @{
*/

/**
* @brief Sets the DMA Transfer parameter.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param SrcAddress: The source memory Buffer address
* @param DstAddress: The destination memory Buffer address
* @param DataLength: The length of data to be transferred from source to destination
* @retval HAL status
*/
static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
{
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << hdma->ChannelIndex);

/* Configure DMA Channel data length */
hdma->Instance->CNDTR = DataLength;

/* Memory to Peripheral */
if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH)
{
/* Configure DMA Channel destination address */
hdma->Instance->CPAR = DstAddress;

/* Configure DMA Channel source address */
hdma->Instance->CMAR = SrcAddress;
}
/* Peripheral to Memory */
else
{
/* Configure DMA Channel source address */
hdma->Instance->CPAR = SrcAddress;

/* Configure DMA Channel destination address */
hdma->Instance->CMAR = DstAddress;
}
}

/**
* @}
*/

#endif /* HAL_DMA_MODULE_ENABLED */
/**
* @}
*/

/**
* @}
*/

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

+ 621
- 0
stm32/f103c8t6/stm32f1xx_hal_pwr.c View File

@@ -0,0 +1,621 @@
/**
******************************************************************************
* @file stm32f1xx_hal_pwr.c
* @author MCD Application Team
* @brief PWR HAL module driver.
*
* This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + Initialization/de-initialization functions
* + Peripheral Control functions
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/

/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"

/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/

/** @defgroup PWR PWR
* @brief PWR HAL module driver
* @{
*/

#ifdef HAL_PWR_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/

/** @defgroup PWR_Private_Constants PWR Private Constants
* @{
*/
/** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask
* @{
*/
#define PVD_MODE_IT 0x00010000U
#define PVD_MODE_EVT 0x00020000U
#define PVD_RISING_EDGE 0x00000001U
#define PVD_FALLING_EDGE 0x00000002U
/**
* @}
*/


/** @defgroup PWR_register_alias_address PWR Register alias address
* @{
*/
/* ------------- PWR registers bit address in the alias region ---------------*/
#define PWR_OFFSET (PWR_BASE - PERIPH_BASE)
#define PWR_CR_OFFSET 0x00U
#define PWR_CSR_OFFSET 0x04U
#define PWR_CR_OFFSET_BB (PWR_OFFSET + PWR_CR_OFFSET)
#define PWR_CSR_OFFSET_BB (PWR_OFFSET + PWR_CSR_OFFSET)
/**
* @}
*/
/** @defgroup PWR_CR_register_alias PWR CR Register alias address
* @{
*/
/* --- CR Register ---*/
/* Alias word address of LPSDSR bit */
#define LPSDSR_BIT_NUMBER PWR_CR_LPDS_Pos
#define CR_LPSDSR_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32U) + (LPSDSR_BIT_NUMBER * 4U)))

/* Alias word address of DBP bit */
#define DBP_BIT_NUMBER PWR_CR_DBP_Pos
#define CR_DBP_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32U) + (DBP_BIT_NUMBER * 4U)))

/* Alias word address of PVDE bit */
#define PVDE_BIT_NUMBER PWR_CR_PVDE_Pos
#define CR_PVDE_BB ((uint32_t)(PERIPH_BB_BASE + (PWR_CR_OFFSET_BB * 32U) + (PVDE_BIT_NUMBER * 4U)))

/**
* @}
*/

/** @defgroup PWR_CSR_register_alias PWR CSR Register alias address
* @{
*/

/* --- CSR Register ---*/
/* Alias word address of EWUP1 bit */
#define CSR_EWUP_BB(VAL) ((uint32_t)(PERIPH_BB_BASE + (PWR_CSR_OFFSET_BB * 32U) + (POSITION_VAL(VAL) * 4U)))
/**
* @}
*/
/**
* @}
*/

/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup PWR_Private_Functions PWR Private Functions
* brief WFE cortex command overloaded for HAL_PWR_EnterSTOPMode usage only (see Workaround section)
* @{
*/
static void PWR_OverloadWfe(void);

/* Private functions ---------------------------------------------------------*/
__NOINLINE
static void PWR_OverloadWfe(void)
{
__asm volatile( "wfe" );
__asm volatile( "nop" );
}

/**
* @}
*/


/** @defgroup PWR_Exported_Functions PWR Exported Functions
* @{
*/

/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
After reset, the backup domain (RTC registers, RTC backup data
registers) is protected against possible unwanted
write accesses.
To enable access to the RTC Domain and RTC registers, proceed as follows:
(+) Enable the Power Controller (PWR) APB1 interface clock using the
__HAL_RCC_PWR_CLK_ENABLE() macro.
(+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.

@endverbatim
* @{
*/

/**
* @brief Deinitializes the PWR peripheral registers to their default reset values.
* @retval None
*/
void HAL_PWR_DeInit(void)
{
__HAL_RCC_PWR_FORCE_RESET();
__HAL_RCC_PWR_RELEASE_RESET();
}

/**
* @brief Enables access to the backup domain (RTC registers, RTC
* backup data registers ).
* @note If the HSE divided by 128 is used as the RTC clock, the
* Backup Domain Access should be kept enabled.
* @retval None
*/
void HAL_PWR_EnableBkUpAccess(void)
{
/* Enable access to RTC and backup registers */
*(__IO uint32_t *) CR_DBP_BB = (uint32_t)ENABLE;
}

/**
* @brief Disables access to the backup domain (RTC registers, RTC
* backup data registers).
* @note If the HSE divided by 128 is used as the RTC clock, the
* Backup Domain Access should be kept enabled.
* @retval None
*/
void HAL_PWR_DisableBkUpAccess(void)
{
/* Disable access to RTC and backup registers */
*(__IO uint32_t *) CR_DBP_BB = (uint32_t)DISABLE;
}

/**
* @}
*/

/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
* @brief Low Power modes configuration functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
*** PVD configuration ***
=========================
[..]
(+) The PVD is used to monitor the VDD power supply by comparing it to a
threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).

(+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
than the PVD threshold. This event is internally connected to the EXTI
line16 and can generate an interrupt if enabled. This is done through
__HAL_PVD_EXTI_ENABLE_IT() macro.
(+) The PVD is stopped in Standby mode.

*** WakeUp pin configuration ***
================================
[..]
(+) WakeUp pin is used to wake up the system from Standby mode. This pin is
forced in input pull-down configuration and is active on rising edges.
(+) There is one WakeUp pin:
WakeUp Pin 1 on PA.00.

[..]

*** Low Power modes configuration ***
=====================================
[..]
The device features 3 low-power modes:
(+) Sleep mode: CPU clock off, all peripherals including Cortex-M3 core peripherals like
NVIC, SysTick, etc. are kept running
(+) Stop mode: All clocks are stopped
(+) Standby mode: 1.8V domain powered off
*** Sleep mode ***
==================
[..]
(+) Entry:
The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFx)
functions with
(++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
(++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
(+) Exit:
(++) WFI entry mode, Any peripheral interrupt acknowledged by the nested vectored interrupt
controller (NVIC) can wake up the device from Sleep mode.
(++) WFE entry mode, Any wakeup event can wake up the device from Sleep mode.
(+++) Any peripheral interrupt w/o NVIC configuration & SEVONPEND bit set in the Cortex (HAL_PWR_EnableSEVOnPend)
(+++) Any EXTI Line (Internal or External) configured in Event mode

*** Stop mode ***
=================
[..]
The Stop mode is based on the Cortex-M3 deepsleep mode combined with peripheral
clock gating. The voltage regulator can be configured either in normal or low-power mode.
In Stop mode, all clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE RC
oscillators are disabled. SRAM and register contents are preserved.
In Stop mode, all I/O pins keep the same state as in Run mode.

(+) Entry:
The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_REGULATOR_VALUE, PWR_SLEEPENTRY_WFx )
function with:
(++) PWR_REGULATOR_VALUE= PWR_MAINREGULATOR_ON: Main regulator ON.
(++) PWR_REGULATOR_VALUE= PWR_LOWPOWERREGULATOR_ON: Low Power regulator ON.
(++) PWR_SLEEPENTRY_WFx= PWR_SLEEPENTRY_WFI: enter STOP mode with WFI instruction
(++) PWR_SLEEPENTRY_WFx= PWR_SLEEPENTRY_WFE: enter STOP mode with WFE instruction
(+) Exit:
(++) WFI entry mode, Any EXTI Line (Internal or External) configured in Interrupt mode with NVIC configured
(++) WFE entry mode, Any EXTI Line (Internal or External) configured in Event mode.

*** Standby mode ***
====================
[..]
The Standby mode allows to achieve the lowest power consumption. It is based on the
Cortex-M3 deepsleep mode, with the voltage regulator disabled. The 1.8 V domain is
consequently powered off. The PLL, the HSI oscillator and the HSE oscillator are also
switched off. SRAM and register contents are lost except for registers in the Backup domain
and Standby circuitry
(+) Entry:
(++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
(+) Exit:
(++) WKUP pin rising edge, RTC alarm event rising edge, external Reset in
NRSTpin, IWDG Reset

*** Auto-wakeup (AWU) from low-power mode ***
=============================================
[..]
(+) The MCU can be woken up from low-power mode by an RTC Alarm event,
without depending on an external interrupt (Auto-wakeup mode).
(+) RTC auto-wakeup (AWU) from the Stop and Standby modes

(++) To wake up from the Stop mode with an RTC alarm event, it is necessary to
configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function.

*** PWR Workarounds linked to Silicon Limitation ***
====================================================
[..]
Below the list of all silicon limitations known on STM32F1xx prouct.

(#)Workarounds Implemented inside PWR HAL Driver
(##)Debugging Stop mode with WFE entry - overloaded the WFE by an internal function
@endverbatim
* @{
*/

/**
* @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
* @param sConfigPVD: pointer to an PWR_PVDTypeDef structure that contains the configuration
* information for the PVD.
* @note Refer to the electrical characteristics of your device datasheet for
* more details about the voltage threshold corresponding to each
* detection level.
* @retval None
*/
void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
{
/* Check the parameters */
assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));

/* Set PLS[7:5] bits according to PVDLevel value */
MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVD_EXTI_DISABLE_EVENT();
__HAL_PWR_PVD_EXTI_DISABLE_IT();
__HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();

/* Configure interrupt mode */
if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
{
__HAL_PWR_PVD_EXTI_ENABLE_IT();
}
/* Configure event mode */
if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
{
__HAL_PWR_PVD_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
{
__HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
}
if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
{
__HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
}
}

/**
* @brief Enables the Power Voltage Detector(PVD).
* @retval None
*/
void HAL_PWR_EnablePVD(void)
{
/* Enable the power voltage detector */
*(__IO uint32_t *) CR_PVDE_BB = (uint32_t)ENABLE;
}

/**
* @brief Disables the Power Voltage Detector(PVD).
* @retval None
*/
void HAL_PWR_DisablePVD(void)
{
/* Disable the power voltage detector */
*(__IO uint32_t *) CR_PVDE_BB = (uint32_t)DISABLE;
}

/**
* @brief Enables the WakeUp PINx functionality.
* @param WakeUpPinx: Specifies the Power Wake-Up pin to enable.
* This parameter can be one of the following values:
* @arg PWR_WAKEUP_PIN1
* @retval None
*/
void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)
{
/* Check the parameter */
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
/* Enable the EWUPx pin */
*(__IO uint32_t *) CSR_EWUP_BB(WakeUpPinx) = (uint32_t)ENABLE;
}

/**
* @brief Disables the WakeUp PINx functionality.
* @param WakeUpPinx: Specifies the Power Wake-Up pin to disable.
* This parameter can be one of the following values:
* @arg PWR_WAKEUP_PIN1
* @retval None
*/
void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
{
/* Check the parameter */
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
/* Disable the EWUPx pin */
*(__IO uint32_t *) CSR_EWUP_BB(WakeUpPinx) = (uint32_t)DISABLE;
}

/**
* @brief Enters Sleep mode.
* @note In Sleep mode, all I/O pins keep the same state as in Run mode.
* @param Regulator: Regulator state as no effect in SLEEP mode - allows to support portability from legacy software
* @param SLEEPEntry: Specifies if SLEEP mode is entered with WFI or WFE instruction.
* When WFI entry is used, tick interrupt have to be disabled if not desired as
* the interrupt wake up source.
* This parameter can be one of the following values:
* @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
* @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
* @retval None
*/
void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
{
/* Check the parameters */
/* No check on Regulator because parameter not used in SLEEP mode */
/* Prevent unused argument(s) compilation warning */
UNUSED(Regulator);

assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));

/* Clear SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));

/* Select SLEEP mode entry -------------------------------------------------*/
if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
}

/**
* @brief Enters Stop mode.
* @note In Stop mode, all I/O pins keep the same state as in Run mode.
* @note When exiting Stop mode by using an interrupt or a wakeup event,
* HSI RC oscillator is selected as system clock.
* @note When the voltage regulator operates in low power mode, an additional
* startup delay is incurred when waking up from Stop mode.
* By keeping the internal regulator ON during Stop mode, the consumption
* is higher although the startup time is reduced.
* @param Regulator: Specifies the regulator state in Stop mode.
* This parameter can be one of the following values:
* @arg PWR_MAINREGULATOR_ON: Stop mode with regulator ON
* @arg PWR_LOWPOWERREGULATOR_ON: Stop mode with low power regulator ON
* @param STOPEntry: Specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg PWR_STOPENTRY_WFI: Enter Stop mode with WFI instruction
* @arg PWR_STOPENTRY_WFE: Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(Regulator));
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));

/* Clear PDDS bit in PWR register to specify entering in STOP mode when CPU enter in Deepsleep */
CLEAR_BIT(PWR->CR, PWR_CR_PDDS);

/* Select the voltage regulator mode by setting LPDS bit in PWR register according to Regulator parameter value */
MODIFY_REG(PWR->CR, PWR_CR_LPDS, Regulator);

/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));

/* Select Stop mode entry --------------------------------------------------*/
if(STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
PWR_OverloadWfe(); /* WFE redefine locally */
PWR_OverloadWfe(); /* WFE redefine locally */
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}

/**
* @brief Enters Standby mode.
* @note In Standby mode, all I/O pins are high impedance except for:
* - Reset pad (still available)
* - TAMPER pin if configured for tamper or calibration out.
* - WKUP pin (PA0) if enabled.
* @retval None
*/
void HAL_PWR_EnterSTANDBYMode(void)
{
/* Select Standby mode */
SET_BIT(PWR->CR, PWR_CR_PDDS);

/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));

/* This option is used to ensure that store operations are completed */
#if defined ( __CC_ARM)
__force_stores();
#endif
/* Request Wait For Interrupt */
__WFI();
}


/**
* @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode.
* @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
* re-enters SLEEP mode when an interruption handling is over.
* Setting this bit is useful when the processor is expected to run only on
* interruptions handling.
* @retval None
*/
void HAL_PWR_EnableSleepOnExit(void)
{
/* Set SLEEPONEXIT bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}


/**
* @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode.
* @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor
* re-enters SLEEP mode when an interruption handling is over.
* @retval None
*/
void HAL_PWR_DisableSleepOnExit(void)
{
/* Clear SLEEPONEXIT bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}


/**
* @brief Enables CORTEX M3 SEVONPEND bit.
* @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes
* WFE to wake up when an interrupt moves from inactive to pended.
* @retval None
*/
void HAL_PWR_EnableSEVOnPend(void)
{
/* Set SEVONPEND bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}


/**
* @brief Disables CORTEX M3 SEVONPEND bit.
* @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes
* WFE to wake up when an interrupt moves from inactive to pended.
* @retval None
*/
void HAL_PWR_DisableSEVOnPend(void)
{
/* Clear SEVONPEND bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}



/**
* @brief This function handles the PWR PVD interrupt request.
* @note This API should be called under the PVD_IRQHandler().
* @retval None
*/
void HAL_PWR_PVD_IRQHandler(void)
{
/* Check PWR exti flag */
if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET)
{
/* PWR PVD interrupt user callback */
HAL_PWR_PVDCallback();

/* Clear PWR Exti pending bit */
__HAL_PWR_PVD_EXTI_CLEAR_FLAG();
}
}

/**
* @brief PWR PVD interrupt callback
* @retval None
*/
__weak void HAL_PWR_PVDCallback(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_PWR_PVDCallback could be implemented in the user file
*/
}

/**
* @}
*/

/**
* @}
*/

#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/

/**
* @}
*/

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

+ 3738
- 0
stm32/f103c8t6/stm32f1xx_hal_uart.c
File diff suppressed because it is too large
View File


Loading…
Cancel
Save