
The Strobe protocol framework

Mike Hamburg∗

Abstract

The “Internet of Things” (IoT) promises ubiquitous, cheap, connected devices.

Unfortunately, most of these devices are hastily developed and will never receive code

updates. Part of the IoT’s security problem is cryptographic, but established crypto-

graphic solutions seem too heavy or too inflexible to adapt to new use cases.

Here we describe Strobe, a new lightweight framework for building both cryp-

tographic primitives and network protocols. Strobe is a sponge construction in the

same family as Markku Saarinen’s BLINKER framework.

The Strobe framework is simple and extensible. It is suitable for use as a hash,

authenticated cipher, pseudorandom generator, and as the symmetric component of

a network protocol engine. With an elliptic curve or other group primitive, it also

provides a flexible Schnorr signature variant.

Strobe can be instantiated with different sponge functions for different purposes.

We show how to instantiate Strobe as an instance of NIST’s draft cSHAKE algorithm.

We also show a lightweight implementation which is especially suitable for 16- and 32-

bit microcontrollers, and also for small but high-speed hardware.

1 Introduction

It is famously difficult for software developers to design and deploy secure protocols, even if

they have some familiarity with cryptography [22]. Expert analysis is needed to determine

what information to encrypt, sign and hash, and with what keys. The usual guidance is that

non-cryptographers should not design or implement protocols at all. If they choose to do it

anyway, most existing protocols offer little guidance for secure protocol design.

The most common approach is simply to use TLS. But while TLS suffices for web traffic,

some applications do not share its constraints. Limited devices might simply not have the

resources to perform TLS. Parties may have the wrong sorts of authenticators, such as

a symmetric key on one side and a certificate on the other. Designers may want to use

∗Rambus Cryptography Research.

1

a mixture of classical and post-quantum cryptosystems, or they might want more or less

repudiability than TLS offers. To accomplish these goals, developers can either build a

custom protocol, or realize one from the academic literature. The literature route is easier,

but not by much. Academic protocols are sometimes specified at a high level, and it is not

obvious how to securely hash, e.g., an identity with a pair of group elements.

To assist the developers of these custom systems, several authors have recently published

frameworks such as NaCl [3], Noise [17], and BLINKER [20]. Such frameworks aim to reduce

the work for developers and limit their opportunities to make mistakes. Here we propose the

Strobe protocol framework in the same vein as BLINKER. Strobe is intended to be more

flexible and extensible than previous work, while still having only “one well-oiled joint” [16].

Strobe’s design is based on both academic and industrial concerns. We hope that it will

facilitate academic cryptography in addition to industrial protocols and implementations.

1.1 Related work

Cryptographic sponge constructions [9] aim to build many different symmetric cryptosys-

tems from a single “random-looking” permutation or function. They have seen considerable

attention due to the selection of the Keccak sponge construction [4] for SHA-3 [1]. But

despite the flexibility of sponges, most sponge constructions are aimed at one particular task.

A notable exception is Saarinen’s BLINKER [20] framework, which provides support for

many different cipher modes and protocols. In order to describe what operation is being done,

BLINKER reserves a portion of the sponge’s capacity for a “pad” word containing metadata.

This word describes the meaning to the protocol of the operation being performed.

The main innovation in Strobe compared to BLINKER is that the cryptography of an

operation depends primarily on that operation’s data flow. Therefore Strobe’s metadata is

divided. At a low level, the padding is mainly an indication of data flow. This padding has

a very strict format, and corresponds directly to how the operation is performed. A second

level of metadata describes what a given operation means to the protocol. This metadata

is free-form and has arbitrary length, and uses the same mechanisms as other messages.

It can either be implicit, or sent to the transport as framing information. If it is used as

framing, metadata may be sent either encrypted or in the clear. This technique gives greater

flexibility to applications. Its performance is generally better than that of BLINKER, and

the complexity is not much greater.

Strobe also improves BLINKER’s ordering of metadata and data. BLINKER’s pad

word is input along with the data, so it only affects later operations and later blocks of

the same operation. For example, if one party encrypts a zero message and the other party

performs a MAC, the outputs will be the same, but future outputs will differ. Strobe’s

padding is entered before the data, so that a MAC is always different from an encryption.

2

1.2 Outline of this work

In Section 3, we give a high-level overview of the Strobe framework. In Section 4, we

describe its internals. In Section 5, we describe how to use it to implement various protocols.

In Section B, we recommend particular choices of sponge functions and parameters. In

Section C, we describe a few extensions. In Section 6, we give implementation results.

2 Definitions and notation

A bit is an element of {0, 1}. A byte is an element of B := [0, 28). A string is an element of

B∗, meaning a sequence of bytes. All keys, messages, and other data in Strobe are strings.

Because Strobe is byte-oriented, endianness usually does not matter to us. When it

does matter, we use a little-endian convention throughout this work, meaning that bit 0 is

the least-significant bit of a multi-bit sequence, and likewise for bytes and larger types. More

formally, let b and n be positive integers. When an element [[Xi : i ∈ [0, n)]] of [0, b)n is

converted to an element of [0, bn), its converted value
∑n−1

i=0 b
iXi.

The notation A||B means the concatenation of sequences A and B. The notation a ⊕ b
means the exclusive-or of a and b.

“MAC” stands for “message authentication code”. “AEAD” stands for “authenticated

encryption with associated data”. “PRF” stands for “pseudorandom function”. “PRNG”

stands for “pseudorandom number generator”.

3 Strobe framework

3.1 Overview and limitations

Strobe is a framework for building cryptographic two-party protocols. It can also be used

for symmetric cryptosystems such as hashing, AEAD, MACs, PRFs and PRNGs. It is

also useful as the symmetric part of a Schnorr-style signature scheme. For brevity we will

describe all of these as protocols in this work. Our protocols either have only one party, or

they have two parties connected by a transport layer. The transport layer may be insecure:

an adversary may be able to see and modify any data which is sent there. We will model a

symmetric cryptosystem such as AEAD as a protocol in which one party encrypts and sends

a message to a recipient using the transport, but the recipient never replies to the sender.

Here the transport might be a storage medium rather than a network, but the security model

is almost equivalent. We describe hashes, PRFs and PRNGs as one-party “protocols” with

no transport.

3

Strobe’s main design principle is that the cryptographic output from any step depends

not only on any keys, but also on all preceding inputs. For example, when encrypting

a message, the ciphertext depends on the key and plaintext. But it also depends on all

preceding data, such as nonces and associated data. Strobe achieves this by keeping a

running hash of the protocol transcript. This design choice optimizes for simplicity and

security instead of speed.

Because of this running hash, Strobe is primarily suited to transports that reliably

deliver messages in order. If a message is corrupted or lost, it will detect this and abort the

protocol, but the session cannot be recovered. Furthermore, Strobe is suited to protocols

that are half-duplex, meaning that the parties take turns sending messages instead of both

sending at once. Many secure channel protocols, such as TLS, are half-duplex for the hand-

shake phase of the protocol, and then become full-duplex once the channel is open. This

is usually achieved by extracting two separate keys from the handshake: one for messages

from Alice to Bob, and one from Bob to Alice. These individual channels then operate

individually in half-duplex mode. We take the same strategy with Strobe: we focus our

attention on half-duplex protocols, and discuss full-duplex ones in Appendix C.1.

Some protocols (e.g. DTLS) are additionally designed to tolerate message loss and out-

of-order message delivery. Strobe is not a complete framework to build these protocols,

but it can still be used in them as a symmetric encryption, hashing and MAC algorithm.

Strobe performs only the symmetric part of a protocol. Public-key encryption and

signatures still need another primitive, such as RSA or elliptic curves. Strobe can make it

easier to integrate these, as shown for Schnorr signatures in Section 5.3.

3.2 Application and transport

The Strobe framework is situated conceptually between two domains: the application and

the transport. The application domain holds data which will be used directly: keys, plaintext

messages, nonces and associated data. We want to protect the confidentiality and integrity

of this data. The transport domain holds data to be transmitted between parties, or data to

be stored and retrieved from untrusted memory. This domain includes ciphertexts, messages

transmitted in cleartext, MACs and signatures. The application never accesses the transport

directly. Instead, it reads and writes all data through Strobe operations such as encryption

and decryption.

Strobe’s operations move data to and/or from the application and/or transport. For

example, an encryption operation takes some amount of data from the application, encrypts

it, and sends the ciphertext to the transport.

In general, the threat model for a Strobe protocol assumes that the transport is entirely

under adversarial control. The application will be largely under the control of an honest

4

Application

Partially trusted

Protocol state machine

Metadata and framing

Public-key crypto

Payload data

←→

Strobe

Mostly trusted

Key derivation

Encryption

MAC

Hash / PRF

←→

Transport

Untrusted

Reliable transmission

Disk storage

Flow control

Figure 1: Strobe division of responsibilities

party. However, the adversary might be able to influence that party’s behavior, or even

compromise it entirely. In a typical threat model, the Strobe layer itself might have its

state stolen by an application compromise, but the adversary cannot otherwise modify its

behavior (e.g. through a fault attack).

3.3 Overview of supported operations

Strobe supports several classes of operations, summarized in Table 1 along with abbrevia-

tions. They are categorized by four important pieces of information, called flags:

• I: Does the operation move data in the “inbound” direction, i.e. transport → cipher

→ application, or in the opposite “outbound” direction?

• A: Does the operation send/receive data belonging to the application, or not? For

example, sending an encrypted message uses application data, but a MAC does not.

• C: Does the operation set a key or use the cipher’s output, or not? For example,

encrypting a message interacts with the cipher, but sending it in cleartext does not.

Operations with the C flag either output the cipher’s data; or if they have no output,

rekey the cipher.

• T : Does the operation send/receive data via the transport, or not? For example, a

secret key does is not sent to the transport, but a cleartext message is.

A main innovation of Strobe is that the behavior of each operation follows in a straight-

forward manner from these four features.

Each operation is performed in an online, streaming manner. It can take data of un-

bounded size, if indeed it uses data at all. The size of the data need not be known before-

hand. Any number of operations may be performed in any order. Implementations might

5

Abbr. Operation Flags Application Strobe Transport

KEY Secret key AC

AD Associated data A

PRF Hash / PRF IAC

CLR Send cleartext data A T

recv-CLR Receive cleartext data IA T

ENC Encrypt ACT

recv-ENC Decrypt IACT

MAC Compute MAC CT

recv-MAC Verify MAC I CT

RATCHET Rekey to prevent rollback C

Legend: Send/recv Absorb into sponge Xor with cipher Roll key

K

0

0

0

K0

K

Table 1: Strobe operations and their data flow.

limit allowable orders for sanity-checking reasons, such as only allowing encryption opera-

tions after a key has been entered. Nevertheless, the operations’ semantics are well-defined

regardless of order.

The RATCHET operation doesn’t have input or output. Instead, it is designed to prevent

rollback attacks, much like the FORGET operation from Keyak [5]. Suppose an attacker

recovers the sponge’s state at the end of the protocol, perhaps through an application exploit.

She can reverse the Strobe steps to learn earlier states and decrypt earlier messages. This

is analogous to recovering the key of a symmetric cipher. The RATCHET operation prevents

this by erasing part of the state. In the tiniest Strobe instances, the state is too small to

erase part of it, and this operation must be done differently. It is also useful to derive keys

from passwords on devices which are too small to run a memory-hard function.

The KEY operation has the same dataflow as AD, and both are designed to act as inputs

to a random oracle, but these operations are different in two subtle ways. First, the KEY

operation overwrites part of the state with the new key, so when the key is long enough it

prevents rollback much like RATCHET. But because Strobe overwrites only at the beginning

of a new block, KEY is more expensive than AD. Second, non-sponge frameworks such as

Noise [17] make distinctions between keys and associated data. Making this distinction in

Strobe improves the portability of Strobe protocols to other frameworks.

6

The behavior of an operation is determined by the 4 bits (I, A, C, T), but our implemen-

tation encodes these in a full byte. This leaves 4 bits for other uses. We will use one of

those bits, labeled M , to distinguish metadata as described in Section 3.6. The M bit has

no effect on how the operation is performed; it is merely hashed into the protocol transcript.

We will use another bit, labeled K, for the DPA-resistant “key tree” extension, as described

in Section C.2. Unlike M , the K bit does affect how the operation is performed. The final

two bits are reserved for future use.

3.4 Protocol transcripts

Strobe maintains a running hash of the protocol transcript, which is the sequence of all

operations and their data as seen by the application layer. This includes operations such as

KEY and AD which do not transmit data to the transport. Formally, the transcript is a list of

pairs of the form

(AdjDir(I0; operation),AppData)

The AdjDir(I0; ·) function adjusts the operations so that when Alice sends a message (with

I = 0) and Bob receives it (with I = 1), the two protocol transcripts will match. It is

implemented as

AdjDir(I0, (I, A, C, T,M,K)) := (I ⊕ (T · I0), A, C, T,M,K)

where I0 is the value of the I flag in the first operation that has T = 1. That is, I0 = 0 for

the initiator and I0 = 1 for the responder.

When A = 1, the AppData is the value sent from the application if I = 0, or returned to

the application if I = 1. When A = 0, then AppData := L × [[0]] for an L-byte operation.

This means that formally, a protocol transcript includes the length of MACs, but not their

values. The protocol will abort when receiving an incorrect MACs.

3.5 Security of Strobe

A formal model of Strobe’s security is outside the scope of this paper. Informally, the ith

block of output (of a certain block size) from a Strobe operation op ∈ {ENC, MAC, PRF} is

function of op; the preceding protocol transcript Tr; that block of input; and the previous

blocks of application data for that block. Specifically,

Outputi = Inputi ⊕G(Tr, AdjDir(I0, operation), (AppData1 || . . . || AppDatai−1))

In the random function model, this G is ε-indifferentiable from a random function after N

total queries to the sponge primitive, where ε ≤ (N/2c/2)2. This follows directly from the

7

lemmas in [7] and the fact that Strobe’s padding is sponge-compliant. Setting c = 2λ is

slightly stronger than a traditional cipher with a λ-bit key. An adversary must put in about

2λ work to break either system. But the adversary is less likely to break Strobe by luck

with much less than 2λ work, and does not benefit as much from extra data.

This means that an adversary cannot distinguish Strobe’s output from random with

probability greater than ε (and cannot forge a t-bit MAC with probability greater than 2−t+ε)

unless one of the following holds:

• The adversary has guessed or calculated the transcript Tr, including all keys entered

into it up to this point.

• Some other party has queried G(Tr,AdjDir(I0, operation),m′) for some m′ and given

the result to the adversary. The adversary would then learn m⊕m′.

• The adversary has compromised the state of the Strobe object through some kind of

side channel.

3.6 Metadata

The security properties of many practical protocols are also stated in terms of protocol

transcripts. This makes it straightforward to evaluate those properties for a protocol P built

on Strobe. But to do this, we must make sure that Strobe’s transcript can be parsed into

a transcript for P .

To begin with, all Strobe protocols must begin with an AD operation containing a

domain separation string. The string should be a URI that uniquely describes the protocol.

This prevents most classes of cross-protocol attacks.

For a simple protocol, each operation might have only one possible meaning in context,

and so the transcript would be parseable. For example, an AEAD encryption scheme might

just use the domain separator and then KEY, AD, ENC and MAC in that order. The meaning of

each of these operations is clear, so long as the length of the MAC is fixed.

A more complex protocol might have many different meanings for the same operation.

A natural pattern to ensure parseability is to precede each operation with a comment in

the transcript that disambiguates it. Such information is usually provided anyway through

protocol framing. That is, when Alice sends a message within (say) a TCP stream, Bob must

be able to determine the kind of message and the length. In order to provide this, usual

Alice will send a tag to indicate the message type, followed by a length field, and finally a

value. This is called tag-length-value framing.

We support this pattern through metadata operations, which are no different from or-

dinary operations except that they have the M flag set. The M flag has no effect on the

8

operation, except that it is included in the transcript. We describe such an operation as

meta-op. Most protocols send framing data in the clear. For this we would use a meta-CLR

transaction, which exactly like CLR except that it has the M flag set in the transcript. If a

meta-ENC operation is used instead, then the framing information will be encrypted. This

may be useful for steganography or length padding. If a protocol does not transport enough

framing information to be completely parseable, it can supply this information through a

meta-AD operation.

We recommend that each non-metadata operation should be preceded by a metadata

operation that describes it. Let OP be some operation, and info be a tag that defines the

meaning of the message to the protocol. The info also includes the message’s length, unless

this is either unknown or fixed by the protocol. We define a tagged operation OP[info](msg)

as follows. First the protocol processes the info with a meta-CLR, meta-AD or meta-CLR

operation as appropriate for framing, and then it processes OP(msg).

For example, ENC[app-ciphertext](“hello”) might mean the two operations

meta-CLR([[0x03, 0x05, 0x00]]); ENC(“hello”)

This frames the message with a tag 0x03 representing app-ciphertext and a length [[0x05,

0x00]] representing five bytes. The format of the tag and length is protocol-specific. So is

how the framing is transmitted: in the clear (meta-CLR), encrypted (meta-ENC) or not at all

(meta-AD).

The length of a Strobe operation does not need to be known ahead of time. This is

especially useful when receiving framing information, since different message types may have

different amounts of extra information. Of course, if the message is to be preceded by its

length, then the length does need to be known first.

4 Implementation

Strobe is based on the duplexed sponge construction [7]. Its implementation is therefore

primarily a matter how the data is padded, and in what order it is absorbed into or squeezed

out of the sponge.

4.1 Beginning an operation

The most interesting part of Strobe’s padding is how it begins an operation. Because

Strobe uses small operations for metadata, it is inefficient to run F for each operation

unless the rate of the sponge is small. Instead Strobe tracks the position of the beginning

of the operation in an extra state variable pbegin. Before running F , it absorbs pbegin into the

9

F F

. . . pbegin,0 0E pbegin,1 04 00∗ 80

F

msg1 00 84 enc1

F

msg2 . . . enc2

Figure 2: Strobe padding for a 2-block ENC operation sent by the initiator, encrypting

msg1||msg2 into enc1||enc2. The numeric constants are written in hexadecimal notation.

sponge and then resets pbegin ← 0. This ensures that pbegin need only be tracked within a

block.

To begin an operation with operation (I, A, C, T,M,K), we perform these steps:

• If this is the first send or receive operation – that is, if (T, I0) = (1,⊥) – then set this

party’s role I0 ← I.

• Absorb pbegin. This increments the position p. Then update pbegin ← p.

• Absorb AdjDir(I0, operation) to disambiguate the operation being performed.

• If the C or K flag is set, end the block by padding it and running F . This ensures all

previous input will affect the next block. The padding uses the new pbegin.1

4.2 Implementation of operations

The operation itself is implemented using a duplex construction [7]. The full details are in

Appendix A.

An ENC operation is illustrated in Figure 2. The operation absorbs first pbegin and the

operation byte AdjDir(I0; ENC), which is 0E if it is being sent by the initiator or 0F if it is

sent by the responder. It updates pbegin to the position of the operation byte. Then the block

is ended with the Strobe padding – the new pbegin – and the cSHAKE padding 04 00∗ 80.

Next comes the first block of the message. Once the rate is reached, the sponge absorbs

pbegin = 00 and the cSHAKE padding 84.

After second block of the message is encrypted, the sponge function F isn’t yet run.

Instead, the next operation will continue in that block.

1Lightweight sponges such as Ketje [6] may have non-uniform round counts. Ending the block this way

should use the higher round count, and ending it by overrunning the rate should use the lower one.

10

5 Applications

5.1 Recommended metadata

Here we present some example protocols. These protocols are defined more completely

at https://strobe.sourceforge.io/examples/. These protocols can be composed. The

signature protocol, for example, can be used as part of a handshake instead of as a standalone

signature.

5.2 Authenticated encryption

In an AEAD scheme, Alice shares a symmetric key K with Bob. She wants to send him an

encrypted message M . She may also want to send some unencrypted data D. She wants

to authenticate this message with a MAC, perhaps along with some associated data A that

will not be transmitted. For semantic security, the parties must use a nonce N , which must

be unique among all AEAD messages with the same key.

With Strobe, it is easy to construct an AEAD scheme. An appropriate order is:

KEY[sym-key](K); AD[nonce](N); AD[auth-data](A); CLR[auth-data](D);

ENC[app-ciphertext](M); MAC[MAC](128 bits);

The operation AD[nonce](N) can be replaced with CLR[nonce](N) to transmit the nonce.

This construction relies on a unique combination of the key, nonce and authenticated

data. In particular, its security may fail if the nonce is not unique. To achieve nonce-misuse

resistance, a two-pass scheme such as SIV [18] must be used.

The AEAD construction can be used with any number nonces, authenticated data ele-

ments, and ciphertexts. It can be used with no ciphertext for just the MAC. It can be used

with no authenticated data by omitting the auth-data item. This is arguably more natural

than encrypting or authenticating the empty string.

5.3 Schnorr signatures

Schnorr’s signature scheme [23] is a simple way to build signatures based on the discrete

logarithm problem in a group G. We will assume that G has an efficient encoding to and

from fixed-length sequences of bG bytes.

The Schnorr scheme can be applied to sign an entire Strobe protocol transcript inline

with the session. As in a typical Schnorr signature, fix a base point g ∈ G of prime order p.

Let b be the number of bytes required to sample (1/
√
g)-uniformly from Z/pZ. Alice has a

11

private key k, from which she derives2 a secret exponent a by running

KEY[sym-key](k); a← PRF[derive-key](b bytes)

Her public key is then A := ga. When Alice needs to sign a Strobe context, she first begins

the signature using a AD[sig-scheme](name) operation. She then needs a pseudorandom

value r. She calculates this determinsitically3 by copying the context and running

KEY[sym-key](k); r ← PRF[sig-determ](b bytes)

in the copy. She calculates R := gr and runs

AD[pubkey](A); CLR[sig-eph](R); c← PRF[sig-chal](b bytes);

ENC[sig-resp](r + ac mod p)

To verify the signature, Bob runs

AD[pubkey](A); R← CLR[sig-eph](bG bytes); c← PRF[sig-chal](b bytes);

s← recv-ENC[sig-resp](dlog256(p)e bytes)

Bob then checks that R = gs/Ac. This holds because gs = gr+ac = R · Ac.
The usual argument [23] proves that this is secure in the random oracle model.

6 Implementation results

We implemented Strobe-128/800 (a 128-bit security level and the Keccak-F [800] sponge)

and Curve25519 [2] for the ARM Cortex-M4 in a mixture of C and assembly. We did not

include support for the key-tree bit K. We used assembly for the Keccak round function,

for the Curve25519 arithmetic functions, and for a few intrinsics. The library uses callbacks

for transport I/O, so that many forms of I/O can be supported. It includes callbacks for

memory buffers, but not for sockets because embedded systems may have very different

socket environments compared to Linux. The C code is moderately optimized for size. We

compiled with gcc-4.9.3 -Os -DNDEBUG and estimated stack usage with -fstack-usage.

Each Strobe context occupies 120 bytes of stack space: 100 B for the sponge data, and 20

B for auxiliary data and callbacks. The results are shown in Table 2.

This demonstrates that an IoT device running Strobe can support pseudorandom gener-

ation, symmetric and asymmetric encryption and decryption, signing, verification with only

4kB of memory. This figure also includes framing code, tagged operations and callback-based

input/output.

2It is just as valid for a to be the private key, but this may impede a standard-model analysis.
3Choosing r randomly also works, but it results in catastrophic failure if the random generator is biased.

12

Operation Code size Global mem Stack mem

Keccak-f [800] 248 B 0 B 36 B

Strobe tagged operations 792 B 0 B 132 B

Strobe as a PRNG 132 B 120 B 148 B

Curve25519 ECDH 1006 B 0 B 392 B

Schnorr signing with Curve25519 438 B 0 B 480 B

Schnorr verification with Curve25519 248 B 0 B 472 B

Total (incl. padding) 2889 B 120 B 600 B +

Table 2: Strobe implementation results. The total stack memory column includes Strobe

functions and one Strobe object, but not the caller’s message buffers or the OS networking

data.

We have not yet tested this with Strobe lite and a lighter-weight cipher. This would

save about 10% of the implementation budget, because the block function and duplex mode

are simpler and the cipher state is smaller.

6.1 Open-source implementation

An open-source version of the Strobe framework is available at https://sf.net/p/strobe.

As of this writing, the ARM intrinsics and the DPA-resistant key tree are not enabled in the

open-source version.

7 Future work

There is much work yet to be done in the area of lightweight protocol frameworks, and for

Strobe in particular. The first order of business is a formal security model, which is likely

to be a much longer paper. A related question is how to incorporate and improve recent

results on reduced sponge sizes [12]. This may be tricky because not all Strobe protocols

will be immediately keyed, and it might require changing the sponge’s rate during operation.

It may also be helpful to change the encryption formula so that decryption doesn’t overwrite

the state. For example, we could change c = m⊕ s to c = m⊕ αs for some α /∈ {0, 1}.
We would also like to improve support for protocols where messages may be delivered out

of order. A different direction is to improve support for handling protocol state machines,

especially in systems which are too small to use threads. It also seems likely that Strobe’s

padding can be made simpler or more efficient. Finally, we are working to implement Strobe

in lightweight hardware, both with Keccak-f and with a lighter-weight sponge.

13

Some standards bodies may not be satisfied with an algorithm that instantiates cSHAKE.

It should not be difficult to implement Strobe’s operations in terms of a hash and a block

cipher or PRF, but we will need to formally specify the security model first.

7.1 Acknowledgements

Thanks to Mark Marson and Lydia Hamburg for proofreading this paper. Thanks to David

Wong for suggesting several post-publication corrections.

References

[1] SHA-3 standard: Permutation-based hash and extendable-output functions. 2015.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[2] Daniel Bernstein. Curve25519: new Diffie-Hellman speed records, 2006. https://cr.

yp.to/ecdh/curve25519-20060209.pdf.

[3] Daniel Bernstein, Tanja Lange, and Peter Schwabe. NaCl: Networking and cryptogra-

phy library. https://nacl.cr.yp.to/.

[4] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak

SHA-3 submission. 2011. http://keccak.noekeon.org/Keccak-submission-3.pdf.

[5] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer.

Keyak. http://keyak.noekeon.org/.

[6] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer.

CAESAR submission: Ketje v2. 2016. https://competitions.cr.yp.to/round3/

ketjev2.pdf.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the

sponge: single-pass authenticated encryption and other applications. In International

Workshop on Selected Areas in Cryptography, pages 320–337. Springer, 2011. http:

//sponge.noekeon.org/SpongeDuplex.pdf.

[8] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random

functions. Journal of the Association for Computing Machinery, 33:792–807, 1986.

http://groups.csail.mit.edu/cis/pubs/shafi/1986-jacm.pdf.

[9] Michaël Peeters Guido Bertoni, Joan Daemen and Gilles Van Assche. Cryptographic

sponge functions. http://sponge.noekeon.org/.

14

[10] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of lightweight

hash functions. Advances in Cryptology–CRYPTO 2011, pages 222–239, 2011. https:

//eprint.iacr.org/2011/609.pdf.

[11] Xu Guo, Sinan Huang, Leyla Nazhandali, and Patrick Schaumont. Fair and compre-

hensive performance evaluation of 14 second round SHA-3 ASIC implementations. In

The Second SHA-3 Candidate Conference. Citeseer, 2010.

[12] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in sponge-

based authenticated encryption modes. Cryptology ePrint Archive, Report 2014/373,

2014. http://eprint.iacr.org/2014/373.

[13] Elif Bilge Kavun and Tolga Yalcin. A lightweight implementation of Keccak hash func-

tion for radio-frequency identification applications. In International Workshop on Radio

Frequency Identification: Security and Privacy Issues, pages 258–269. Springer, 2010.

[14] John Kelsey, Shu-jen Chang, and Ray Perlner. SHA-3 derived functions. 2016. http:

//csrc.nist.gov/publications/drafts/800-185/sp800_185_draft.pdf.

[15] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Annual

International Cryptology Conference, pages 388–397. Springer, 1999.

[16] Adam Langley. Cryptographic agility. https://www.imperialviolet.org/2016/05/

16/agility.html.

[17] Trevor Perrin. Noise protocol framework. https://noiseprotocol.org/.

[18] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap

problem. In Advances in Cryptology - EUROCRYPT 2006. Springer, 2006. https:

//www.iacr.org/archive/eurocrypt2006/40040377/40040377.pdf.

[19] Pankaj Rohatgi. Fight side-channel attacks with leakage-resistant protocols, 2011.

http://www.embedded.com/print/4230467.

[20] Markku-Juhani O. Saarinen. Beyond modes: Building a secure record protocol from a

cryptographic sponge permutation. CT-RSA, 2014. http://eprint.iacr.org/2013/

772.

[21] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A compact Rijndael

hardware architecture with s-box optimization. In International Conference on the The-

ory and Application of Cryptology and Information Security, pages 239–254. Springer,

2001.

15

[22] Bruce Schneier. Amateurs produce amateur cryptography. https://www.schneier.

com/blog/archives/2015/05/amateurs_produc.html.

[23] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of cryptol-

ogy, 4(3):161–174, 1991.

A Implementation details

Here we give a detailed description of Strobe’s implementation.

A.1 State of a Strobe object

A Strobe object is described completely by certain fixed parameters and by its state vari-

ables. The parameters are:

• The sponge’s rate r and capacity c. We require r and c to be multiples of one byte (8

bits) with r at least 3 bytes and at most 256 bytes. In Appendix C.2 we describe how

a certain power analysis countermeasure is very similar to reducing the rate to only a

few bits. Let r̂ = r/8− 2. This is the portion of the rate which is used for user data,

measured in bytes.

• The sponge function F : B(r+c)/8 → B(r+c)/8. Our recommendations use Keccak-f

instances.

• The initial state S0 ∈ B(r+c)/8. This may be nonzero for domain separation from other

sponges with the same function F . Our recommendations use the draft cSHAKE [14]

domain separation with strings of the form “STROBE vx.y”.

• A nonzero constant byte DDATA. This is absorbed into the sponge at the end of every

block to delimit how much data was in the block. Our recommendations use 0x04 for

compatibility with cSHAKE.

• A constant byte DRATE, which has no security effect and may be zero. Our recommen-

dations use 0x80 for compatibility with cSHAKE.

The state variables are:

• The sponge state S ∈ B(r+c)/8.

• The position within the sponge state p ∈ [0, r̂], measured in bytes. This is the index

of the next byte of the sponge state to be used. The last two bytes are reserved for

padding.

16

• A second position pbegin ∈ [0, r̂ + 1], also measured in bytes. This is set to p when the

beginOp function is called.

• A value I0 ∈ {0, 1,⊥}, to indicate whether this party is an initiator or responder.

I0 = 0 for a initiator, which is a party that sent a message to the transport before

receiving one. It is 1 for a responder, which is a party that received before sending. It

is ⊥ if this party has neither sent nor received a message.

Strobe has three subroutines: runF, beginOp and duplex.

A.2 runF

The subroutine runF() records the current position p and operation beginning pbegin, and

then runs the protocol’s F function.

Function runF is

Update S[p]← S[p]⊕ pbegin;

Update S[p+ 1]← S[p+ 1]⊕ DDATA;

Update S[r̂ + 1]← S[r̂ + 1]⊕ DRATE;

Update S ← F (S);

Reset p← 0 and pbegin ← 0;

end

A.3 beginOp

The beginOp subroutine is run at the beginning of a new operation. It absorbs a byte into

the sponge state which describes what the operation is. It also writes pbegin into the sponge

state, and then changes pbegin to delimit the beginning of the operation. Finally, if the

operation uses the cipher state, it runs the F function so that all prior changes affect the

sponge’s output. Note that the K flag is an extension and might not be implemented.

17

Function beginOp (I, A, C, T,M,K) is
input : operation (I, A, C, T); metadata indicator M ; keytree indicator K

Update S[p]← S[p]⊕ pbegin;

p← p+ 1; pbegin ← p;

if p ≥ r̂ then runF ();

if I0 = ⊥ and T = 1 then I0 ← I;

opByte← [[I ⊕ (T · I0), A, C, T,M,K, 0, 0]] ∈ B;

Update S[p]← S[p]⊕ opByte;

p← p+ 1;

if p ≥ r̂ or C = 1 or K = 1 then runF ();

end

A.4 duplex

We are now ready to describe the main Strobe duplex mode. It is worth noting that while

this duplex mode is expressed in terms of a length L or message m known before calling

duplex, this is not actually required. The algorithm can be run in a streaming fashion, one

byte at a time.

18

Function duplex ((I, A, C, T,M,K); L or m) is

input : Operation (I, A, C, T,M,K)

input : If A = 1 and I = 0, an L-byte message m from the application.

input : If T = 1 and I = 1, an L-byte message m from the transport.

input : Otherwise, a message length L in bytes.

output: If A = 1 and I = 1, an L-byte message for the application.

output: If T = 1 and I = 0, an L-byte message for the transport.

output: Otherwise, success or failure.

// If no input, then input is zeros

if (I = 0 and A = 0) or (I = 1 and T = 0) then m← L× [[0]];

// Mark our position

beginOp(I, A, C, T,M,K);

// Duplex operation

if K = 1 then

// DPA-resistant key tree as specified in Section C.2

. . . ;

else

for each byte b in m do

if C = 1 then append b⊕ s[p] to output;

else append b to output;

if C = 1 and (I = 1 or T = 0) then s[p]← b;

else s[p]← b⊕ s[p];
p← p+ 1;

if p ≥ r̂ then runF ();

end

end

// Write output

if I = 0 and T = 1 then send the output to the transport;

else if I = 1 and A = 1 then return the output to the application;

else if (A, T, I) = (0, 1, 1) and output 6= L× [[0]] then fail: invalid MAC;

else return success;

end
Algorithm 1: Strobe duplex operation

19

B Instantiation

Our main recommendations are Strobe-128, Strobe-256 and Strobe-128/800 as de-

scribed below.

B.1 Strobe

The protocol framework Strobe-f -λ/b is a Strobe instance with a target security level of

λ bits. It has c = 2λ, r+ c = b and F = f [b]. If f is Keccak-f , it is omitted from the name.

If b is the default b for that f (1600 in the case of Keccak-f) it is likewise omitted. For all

these instances, DDATA and DRATE are 0x04 and 0x80, respectively.

Let V be the 12-byte string “STROBEvx.y.z”, for single-digit major version x, minor

version y, and patch version z, currently 1.0.2. Let the initial state be

S0 := F (bytepad(encode string(“”)||encode string(V), r/8))

= F ([[1, r/8, 1, 0, 1, 12 · 8]] || V || (r/8− 18)× [[0]])

Then the data absorbed into the sponge before calling F is always of the form

bytepad(encode string(S)||encode string(“”), r/8) || X || 0010∗1

for some X. The padding is written 0010∗1 as a little-endian bit string; as a byte string it

is either 0x84 or 0x04 0x00∗ 0x80. For Strobe-128, any data squeezed from the sponge

will then be draft cSHAKE128(X). Likewise, for Strobe-256, any data squeezed from the

sponge will be of the form draft cSHAKE256(X).

We recommend using 256-bit keys even with Strobe-128, if this can be afforded. Because

of the 256-bit capacity, this construction is designed to take on the order of 2128 operations

to break even with 2128 data. It is therefore stronger than the traditional notion of 128-bit

security. With only 128-bit keys, an adversary who gets n encryptions with the same nonce

and n different keys would need only 2128/n operations to break one key, as in a traditional

128-bit cipher mode. This same degradation applies to Strobe-256 if 256-bit keys are used.

Strobe-128/800 is ideal for efficiency on 32-bit microcontrollers, because Keccak-f [800]

uses 32-bit logical operations. Also, the smaller 100-byte state is easier to squeeze into

resource-constrained environments. As with Strobe-128, better security will result from

using 256-bit keys when resources permit.

Strobe-128/400 should offer a competitive combination of light weight and high speed

in hardware. A cycle-per-round Keccak-f [400] implementation costs less than 11 kilogate

equivalents (kGE) [13]. After adjusting for Strobe’s reduced rate r̂, this would consume

1.25 cycles per byte. An AES-128 engine with comparable throughput costs 8.8 kGE [21],

but this includes no hashing or authentication. A comparable SHA-256 engine would cost

almost 20 kGE [11].

20

B.2 Strobe lite

Since Strobe is simple and adaptable, it is attractive to use it in lightweight hardware.

Suitable sponges include Keccak-f [200], as well as lightweight sponges such as Photon [10].

However, with a rate of only a few bytes, it makes no sense to track or encode the beginOp

position pbegin. Instead, we simply end the block, using a different DRATE to indicate that a

new operation is beginning. This enables us to use r̂ = r/8− 1 instead of r/8− 2. Since we

certainly cannot be compatible with cSHAKE, we don’t need a DRATE. We also simplify by

setting DDATA = 0x03 when beginning an operation and 0x02 otherwise. We then modify

runF and beginOp as follows:

Function runF lite is

Update S[p]← S[p]⊕ 0x02;

Update S ← F (S);

Reset p← 0;

end

Function beginOp lite (I, A, C, T,M,K) is
input : operation (I, A, C, T,M,K)

if I0 = ⊥ and T = 1 then I0 ← I;

opByte← [[I ⊕ (T · I0), A, C, T,M,K, 0, 0]] ∈ B;

Update S[p]← S[p]⊕ opByte;

Update S[p+ 1]← S[p+ 1]⊕ 0x03;

Update S ← F (S);

Reset p← 0;

end

The RATCHET operation is not effective at preventing rollback when r̂ < λ/8. Instead one

must instead read λ/8 bytes with PRF, then writing them back with KEY.

B.3 Non-sponge

Strobe’s operations can also be implemented with a hash and a PRF (eg, a block cipher)

instead of a sponge function. This forgoes the code size and memory advantages of a sponge

function. But it may be preferable for standards-compliance reasons, or when AES and SHA

accelerators are available.

We leave the exact implementation to future work. It should look very similar to the

symmetric operations in Noise [17].

21

C Extensions

C.1 Full-duplex and multiple-channel protocols

Practical protocols often have a half-duplex key agreement phase, but once the key has

been determined, the protocol becomes full-duplex. This use case is easy to implement with

Strobe. One can treat a full-duplex protocol as two half-duplex protocols, one in each

direction. For each half-duplex instance, one copies the Strobe object’s state. To make the

sponge states different and to ensure forward security, it is sufficient to run on each state a

meta-AD and a RATCHET operation with a different AD for each direction. This also works for

protocols which instantiate more than two channels, but at the cost of a separate Strobe

object for each channel.

In some cases, it is sufficient just to copy the Strobe state without performing any other

operations. This will be enough if three conditions are met:

• Only two half-duplex channels are required, one in each direction.

• Forward secrecy is not required within the session. Otherwise an attacker who com-

promises the state for one direction might learn the initial state of the other direction.

• At least one message has been sent to the transport already, so that I0 6= ⊥. This

ensures that the opByte is different between the two directions.

C.2 DPA countermeasures

Differential power analysis (DPA [15]) is a side-channel attack which extracts a key by

observing its use with many different inputs. This is especially a problem with conventional

block cipher modes, because they do not change the key between blocks. Strobe’s secret

data changes every block to a new pseudorandom value, which naturally mitigates DPA

attacks. Furthermore, Keccak-f itself is suited to primitive-level DPA countermeasures

due to its relative paucity of nonlinear operations. But the area and performance cost of

primitive-level countermeasures may deter implementers, so protocol countermeasures are

desirable.

Even though the secret data changes every block, there is the potential for attack when

the same key is used in several Strobe instances, e.g. as a long-term pre-shared symmetric

key. This can be mitigated by using a nonce for each connection. Each party injects the

key using a KEY operation immediately after the session is initialized, before it contains any

per-session data. This operation resists DPA because the key is mixed with a constant state.

Then one nonce must be contributed by each party that might be subject to a DPA attack,

to ensure uniqueness. After the nonces are mixed, the parties RATCHET to prevent rollback.

22

The resulting session will have a unique shared key which is a pseudorandom function of the

long-term key. Since this diversified key is never reused, the inherent resistance of stream

cipher modes should be enough to protect against DPA.

There is still the question of how to mix in the nonce in a DPA-resistant manner. To

do this, we use a variant of the “key tree” operation [19], which is essentially the GGM

construction of a pseudorandom function [8]. This is almost exactly equivalent to reducing

the rate to rkt bits for some small rkt dividing 8.4 Then each intermediate capacity value

can only ever be used with at most 2rkt + 1 possible inputs.

Here we describe the key tree duplex operation, to be slotted into the ellipsis in duplex.

In practice the “for each rkt-bit chunk” loop will be a nested loop which iterates over each

byte and modifies each byte several times.

// Key tree duplex operation. Note that p = pbegin = 0 because beginOp

runs F

for each rkt-bit chunk b in m do

if C = 1 then append b⊕ (first rkt bits of s[0]) to output;

else append b to output;

if C = 1 and (I = 1 or T = 0) then s[0]← s[0] & (28 − 2rkt);

s[0]← b⊕ s[0];

// Implement runF but with pbegin = 0 and p = (rkt bits).

Update S[1]← S[1]⊕ (DDATA << rkt);

Update S[2]← S[2]⊕ (DDATA >> (8− rkt));
Update S[r̂ + 1]← S[r̂ + 1]⊕ DRATE;

Update S ← F (S);

end

When this algorithm is employed, each key is only passed to F in a few ways:

• The initial state is marked and then passed to F . The number of different states passed

to F this way is the number of possible AdjDir(I, A, C, T,M) operations which can be

called in that state, which depends on the protocol but is likely to be very small.

• Each intermediate state is either used in the loop body, with 2rkt possible values of

b before running F again, or exits the loop at the bottom. To prevent rollback, we

recommend that the next call be duplex (RATCHET, c/8 bytes), which also calls F in

exactly one way.

4It is also possible to do this with rkt > 8 or rkt not dividing 8, but it adds extra unenlightening code, so

we omit this.

23

The key tree algorithm can be used for DPA-resistant authenticated encryption, by using

a key tree as a DPA-resistant MAC algorithm [19].

24

