
CCCG 2015, Kingston, Ontario, August 10–12, 2015

A Fault Tolerant Data Structure for Peer-to-Peer Range Query Processing

Zahra Mirikharaji∗ Bradford G. Nickerson†

Abstract

We present a fault tolerant dynamic data structure
based on a constant-degree Distributed Hash Table
(DHT) called FissionE that supports orthogonal range
search in d-dimensional space. A publication algorithm,
which distributes data objects among all nodes in the
network is described, along with a search algorithm that
processes range queries and reports all objects in range
to the query issuer. Routing messages between two
nodes is performed by the FissionE routing algorithm.
The worst case orthogonal range search cost in our data
structure with n nodes is O(log n+m) messages plus re-
porting cost, where m is the minimum number of nodes
intersecting the query. Storing d complete copies of each
data object on d different nodes provides redundancy
for our scheme. This redundancy permits completely
answering a query in the case of simultaneous failure of
d− 1 nodes.

1 Introduction

In structured peer-to-peer networks, the P2P overlay
network topology is tightly controlled to place contents
at specified locations that will make data discovery more
efficient. Many structured P2P systems like Chord [15],
Tapestry [19], Pastry [11], CAN [9] and FissionE [8] use
a DHT [10] to distribute data objects deterministically
among the peers and retrieve them with the data ob-
ject’s unique key. DHT-based systems employ hashing
to assign IDs to the peers; each peer is responsible for
a small specific subset of the data. The number of re-
quired messages exchanged between nodes to answer a
query defines search cost in these networks.

DHT schemes are normally capable of processing ex-
act match searches, but not more complex searches such
as range search . A number of recent papers have in-
vestigated DHTs to process range queries. DHT-based
techniques for range query answering are classified into
two groups [18]; layered indexing and customized in-
dexing. In layered indexing techniques, the underlying
topology and routing algorithm of DHTs are used to
answer range queries. Our work is in the layered cate-
gory. Customized indexing uses a custom-designed P2P

∗Faculty of Computer Science, University of New Brunswick,
zahra.miri@unb.ca
†Faculty of Computer Science, University of New Brunswick,

bgn@unb.ca

overlay or modifies an existing P2P overlay network to
support range search.

In layered indexing, Gupta et al. [5] use a prob-
abilistic scheme that relies on locality sensitive hash-
ing. However, this method can only report approxi-
mate answers for one dimensional range queries. Squid
[12] and DCF-CAN [1] use space-filling curves (SFC) to
map multi-dimensional keys to the peers. Space-filling
curves are locality preserving, but they lead to a less
efficient search cost, because a single range query may
cover several parts of the curve, each of which requires a
separate query. In customized indexing, the skip graph
[2] and SkipNet [6] are P2P networks having O(log n)
degree that support one dimensional orthogonal index-
ing. Family trees [17] and the rainbow skip graph [4]
are both constant-degree and support one dimensional
range queries. Mercury [3], Znet [13] and MIDAS [16]
provide indexing schemes for multi-dimensional space.
Mercury [3] provides multiple attribute range queries
by indexing the data set along each attribute. The la-
tency of the message routing algorithm in Mercury [3] is
log2 n

k when each node maintains k links to other nodes.
MIDAS [16] resolves the request in O(log n) hops when
each peer’s degree is O(log n). In Znet [13], SFCs (Space
Filling Curves) are used and skip graphs [2] are extended
for query routing, with each node maintaining O(log n)
states.

Most distributed indexing structures supporting
range search don’t work on a constant-degree graph.
Among the existing constant-degree schemes support-
ing range search, Armada [7] provides a higher efficiency
in terms of query delay and number of required mes-
sages. It has been proven in [7] that the lower bound
on the message cost of general range query schemes
on constant-degree distributed hash tables (DHTs) is
Ω(log n)+m−1, where m is the number of nodes inter-
secting queries. Armada uses the FissionE P2P network
topology DHT scheme based on Kautz graphs [8]. Li et
al. [7] have proven that the average message cost of one
dimensional queries on uniformly distributed data in
PIRA (PrunIng Routing Algorithm) is close to the lower
bound on message cost of range queries on constant-
degree DHTs. For multi-dimensional indexing, Li et al.
[7] have not presented any guarantee on the number of
messages required to answer a d-dimensional orthogonal
range query. They used simulation to show that the av-
erage message cost of MIRA (Multiple attribute prunIng
Routing Algorithm) is about log n + 4m − 1 messages.

27th Canadian Conference on Computational Geometry, 2015

Armada uses the failure recovery mechanisms of the un-
derlying DHT structure of FissionE [8] to accommodate
routing recovery, but they don’t provide data recovery.
Our work improves on Armada’s MIRA algorithm by ef-
ficiently providing support for orthogonal range search
even with simultaneous failure of up to d− 1 nodes in a
network of n nodes.

2 Results

Our paper presents a peer-to-peer distributed dynamic
data structure employing FissionE [8] as a constant-
degree DHT to route the messages. We give a data
publication algorithm to assign d copies of each object
to d different nodes. An orthogonal rage search algo-
rithm for each node in an n-node peer-to-peer network
is given that can answer d-dimensional range queries Q
issued from any network node. The worst case cost for
a d-dimensional range search on our data structure with
n nodes is O(log n + m) messages, for m the minimum
number of nodes intersecting the query. To support dy-
namic joining and departure of nodes and failure recov-
ery, we use split large and merge small policies [8]. To
the best of our knowledge, our data structure is the first
distributed dynamic spatial data structure to fully sup-
port orthogonal range search with simultaneous failure
of d− 1 nodes.

3 Data Structure

3.1 Introduction to FissionE

FissionE [8] is a constant-degree distributed hash table
based on the Kautz graph. A Kautz graph is a directed
graph with static topology that uses Kautz strings as
node identifiers. In the following, we present related
definitions explaining Kautz graph topology on which
the FissionE DHT is built.

The string u1u2...uk of length k and base d is a Kautz
string where ui ∈ {0, 1, 2, ..., d} and ui 6= ui+1 (1 ≤ i ≤
k − 1). All Kautz strings of length k and base d create
the KautzSpace(d, k) of size dk+dk−1. To show the size
of KautzSpace(d, k), we know that the first symbol in
a Kautz string has d+ 1 possibilities. Two consecutive
symbols in a Kautz string must be different, so all other
symbols have d possibilities.

The Kautz graph K(d, k) is a directed graph of de-
gree d with dk + dk−1 nodes labelled by strings in
KautzSpace(d, k). Each node U = u1u2...uk of a
Kautz graph has the same out-degree and in-degree d.
There is an outgoing edge from U to V if and only if
V = u2u3...ukα where α ∈ {0, 1, ..., d} and α 6= uk. Fig-
ure 1 shows Kautz graph K(2, 3) with out-degree 2 and
12 nodes.

The Kautz graph has desirable properties like optimal
diameter that are important in peer-to-peer networks.

Figure 1: Kautz graph K(2, 3) (from [8]).

Figure 2: An example of FissionE topology (from [8]).

Diameter is the longest shortest path between any two
vertices of a graph and is always in trade-off with the
degree of a graph. For a graph with n = dk + dk−1

nodes and degree d, the Kautz graph has the smallest
diameter of any possible directed graph. In addition, in
Kautz graph K(d, k), there are d disjoint paths between
any two nodes and failure of d− 1 nodes is tolerable.

FissionE uses a K(2, k) Kautz graph. A Kautz graph
is a static topology, so it needs some adjustment to be
used for dynamic peer-to-peer networks. Li et al. in
[8] propose a new topology called approximate Kautz
graph. To achieve an approximate Kautz graph, the
network topology is first initiated with a Kautz graph,
and then in dynamic operations (addition and deletion
of nodes) a topological rule called the neighbourhood in-
variant rule is adopted. Based on this rule, the length
of identifiers may be different for different peers and the
difference in length of node identifiers of any two neigh-
bours must be one or zero. Figure 2 shows an example
of neighbourhoods in FissionE topology. This topology
is first initiated with Kautz graph K(2, 3). Node 202 is
split to permit node 2021 to join the network with ex-
isting node 202 becoming node 2020. Data in nodes 101
and 102 are merged to provide one less node which re-
sults in node 101 being relabelled to node 10, and node
102 departing from the network.

To distribute objects among nodes in the FissionE
scheme, the Kautz hash algorithm is proposed in [8].
The Kautz hash algorithm maps an object’s unique key

CCCG 2015, Kingston, Ontario, August 10–12, 2015

(of any length) to the destination Kautz string of length
m consisting of digits vi ∈ 0, 1, 2, where consecutive dig-
its must be different. Li et al. [8] show that when m =
100, the Kautz hash algorithm uniformly distributes
the Kautz strings it generates in Kautz namespace
KautzSpace(2, 100). As mentioned in Algorithm 1.2.2
of [8], this namespace has size 2100+299 ' 1.9×1030. To
publish an object O in a FissionE topology from node
p, the Kautz string V of the object is first computed.
Next, node p (the original node) routes the generated
Kautz string V to place O in the node whose identifier
is a prefix of V . To locate an object in the network, the
same process is performed, with node p being the query
issuer.

The long path routing algorithm in a Kautz graph
is chosen as the Routing algorithm in FissionE. In this
algorithm, routing from node U to the node where desti-
nation Kautz string V resides is performed by left shift-
ing the symbols of U and adding the symbols of V from
left to right at the end of U . For example, if U = 021
and V = 12010, the longest common prefix of V and
suffix of U is equal to 1. So the length of path from
node U to the node whose identifier is a prefix of V is
2, and the routing path is 021→ 212→ 120.

It is proven in [8] that the average degree of vertices
in a FissionE network is 4 and its Kautz graph diame-
ter is less than 2 log n. These desirable characteristics
motivate us to use FissionE as our overlay network to
route messages between nodes and provide dynamic op-
erations of node arrival and departure.

3.2 Data Distribution

DHT-based peer-to-peer networks usually use consis-
tent hashing functions to map data objects and peers
to a namespace. In the namespace, each node takes
the responsibility of storing values with IDs close to its
own ID. In the case of range queries, a peer-to-peer net-
work requires data ordering, so the hash function used
to map values into the namespace is replaced by a local-
ity preserving mapping function. Although the FissionE
scheme is a high performance distributed peer-to-peer
network and achieves optimal diameter on a constant
degree graph, it supports only processing of exact match
queries (point queries). In this work, we present a gen-
eral range query scheme that uses FissionE for routing
messages. Two main components of our work are the
data distribution and the range search algorithms. Our
data distribution algorithm publishes d copies of each
object on d different nodes in a way that preserves data
locality. Our range search algorithm efficiently forwards
queries to the appropriate nodes in range. We first give
a formal definition of a total order relation, and then
explain our data distribution algorithm. To efficiently
answer a range query over a peer-to-peer network, it is
required to define a total order relation on the dataset

to keep the order of data in each dimension. A total or-
der relation is a binary relation on set X denoted by ≤
which has the following properties for all a, b and c ∈ X
:

1. Antisymmetry: If a ≤ b and b ≤ a then a = b.

2. Transitivity: if a ≤ b and b ≤ c then a ≤ c.

3. Totality: a ≤ b or b ≤ a.

A total order relation on data provides propagation
of objects on FissionE nodes in such a way that objects
with close values are placed on the same or neighbouring
nodes. In our data structure, we define a total order
relation for each dimension i as follows:
For two points P (p1, p2, ..., pd) and Q(q1, q2, ..., qd), P ≤
Q in dimension i if pi ≤ qi.

As explained in section 3.1, in FissionE the identi-
fier of nodes are Kautz strings and network nodes are
initiated to a Kautz graph. All Kautz graphs have a
Hamiltonian path. A Hamiltonian path in a graph is a
path that visits each node of a graph exactly one time.
In our work, we use the Hamiltonian path in the under-
lying Kautz graph of FissionE, and assign the index of
each node in the Hamiltonian path as the key to each
node.

To preserve data locality along all dimensions, we dis-
tribute data objects among nodes by partitioning the
space based on point coordinates. In d-dimensional
space, we assign d sets of points to each node i on the
network, each set corresponding to one dimension. Set
Sji is the data stored on node i based on the total order
relation in dimension j. For example, in 2-dimensional
space, if we denote dimension 0 with x coordinates, and
dimension 1 with y coordinates, we assign two sets of
points Sxi and Syi to every FissionE node i.

The distribution of points based on each dimen-
sion over n nodes is a noncrossing partition NC(S) =
{Sj1, Sj2, ..., Sjn} [14]. A partition over set S on dimen-
sion j has the following properties:

• The union of the sets of NC(S) =
{Sj1, Sj2, ..., Sjn} is equal to S. The elements
of NC(S) are said to cover S; i.e. for any j,
0 ≤ j ≤ d− 1, ∪ni=1Sji = S where d is the number
of dimensions in the data structure.

• The intersection of any two distinct sets of NC(S)
is empty; i.e. the elements of NC(S) are pairwise
disjoint. Thus Sji ∩ Sjk = ∅ if Sji ∈ NC(S), Sjk ∈
NC(S), i 6= k.

In 2-dimensional space, our data structure provides
one backup copy of data published on all nodes to
achieve search cost near the lower bound, in addition
to providing data recovery. A copy of data stored in

27th Canadian Conference on Computational Geometry, 2015

01

12

0210

21

20

A

BC

D

E

Figure 3: A Hamiltonian path on Kautz graph K(2, 2).

node i is stored in all n − 1 other nodes except node
i. Figure 4 shows an overview of the data distribution
in a 2-dimensional space over the Kautz graph K(2, 2)
shown in Figure 3. If the data is distributed in a uniform
random fashion in space, a balanced load for each node
results. The horizontal colour bar in each cell indicates
the place of the first copy of data in that cell based on
dimension 0 (X), and the vertical colour bar indicates
the place of the second copy of data in that cell based
on dimension 1 (Y). For example, assume L = [0, 0] and
U = [12, 12] are the lower and upper bound of the entire
2-dimensional space, and P = [0.8, 1.2] is a point. By
uniformly partitioning the space among the six nodes
in Figure 3, point P is placed in the lower left cell with
red and orange bars. The red and orange bars show
that the first and second copies of point P are stored on
nodes 12 and 20, respectively.

12

10

02

21

01

20

X

Y

𝑳𝟎

𝑳𝟏
𝑼𝟎

𝑼𝟏

Figure 4: An overview of a 2-dimensional data distribu-
tion in our data structure.

Algorithm 1 shows how d-dimensional data objects
are distributed on a network of n nodes. This algorithm
publishes d copies of object O on d different nodes. The

place of the ith copy of object O depends on Oi and
the place of the other i− 1 copies of O that are already
specified. [Li, Ui] in this algorithm is the entire interval
of object values in dimension i. When a network is
initiated with a Kautz graph, a Hamiltonian path of
the graph is found and stored on all nodes. In the case
of join and departure of a node, this Hamiltonian path
P is updated on all nodes.

Algorithm 1 Publish data object O on a network with
n nodes.
1: procedure DataDistribution(ObjectVal O,

NumofNodes n, NumofDims d, LowerBound L,
UpperBound U , HamiltonianPath P)
// O = [O0, O1, ..., Od−1] is the coordinate of a point
that should be published on d nodes.
// L = [L0, L1, ..., Ld−1] and U = [U0, U1, ..., Ud−1] are
the lower and upper bounds, respectively, of the entire
space.

2: if (O < L‖O > H) then
3: return (O is not in range.)
4: end if
5: NodeIndex← null // NodeIndex is an array of

size d showing the indices of nodes that O will be
published on.

6: for i← 0, d− 1 do

7: node = dOi − Li

Ui − Li
(n)e − 1

8: for j ← 0, i do
9: if NodeIndex[j] == node then

10: node = (node + 1) mod n
11: j ← 0
12: end if
13: end for
14: NodeIndex[i]← node
15: end for
16: NodeID ← null // NodeID is an array of size d

showing the Kautz string of nodes where O is stored.
17: for i← 0, d− 1 do
18: NodeID[i]← P [NodeIndex[i]]
19: end for
20: return(NodeID)
21: end procedure

3.3 Range Search

We initially assume that the query Q is searching for
one specific point P (x, y) in our data structure. The
query can be issued at any one of the nodes. Routing
starts at the query issuer node. The query issuer uses
Algorithm 1 to find the NodeID list corresponding to
point P which contains d distinct addresses of P . The
query issuer then determines which of the point’s ad-
dresses to use. To do that, the longest Kautz string Si

which is a suffix of the query issuer ID and a prefix of
NodeID[i] is calculated for each i, 0 ≤ i ≤ d− 1. Then
the query issuer uses the FissionE routing algorithm [8]
to pass the query to the NodeID[j], where Sj has the

CCCG 2015, Kingston, Ontario, August 10–12, 2015

maximum length among all Sis.
A Hamiltonian path A, B, C, D, E for the Kautz

graph K(2, 2) is shown in Figure 3. Algorithm 2 an-
swers a d-dimensional range query Q in a network of n
nodes. Our range search algorithm has two main parts.
First, it determines which dimension of Q intersects the
minimum number of nodes. Second, the first node i in
range is found and the first portion of data in range
is reported. Node i checks if the query upper bound
is greater than the node i upper bound; if so then the
rest of the search result might be in the next node and
an updated query is sent to the next node in range.
The new query rectangle is the result of subtracting the
query range of node i from the old query rectangle. The
same process continues until the last node intersecting
the query reports the last part of the result to the query
issuer node.

For example, assume that j is the dimension inter-
secting the fewest nodes. Node i is the first node
that sends the result back to the query issuer if
ThisNodejL < QjL < ThisNodejU where ThisNodejL
and ThisNodejU are node i’s lower bound and up-
per bound respectively, in dimension j and QjL is the
lower bound of the query in dimension j. If the up-
per bound QjU of the query in dimension j is greater
than ThisNodejU , the query is passed to the next node
in range by the call at line 17. The next node on the
Hamiltonian path now receives the query, which was
updated as shown on line 16.

Theorem 1 The worst case orthogonal range search
cost in our fault tolerant data structure for any data
distribution in a d-dimensional space with n nodes is
O(log n + m) messages plus reporting cost, where m is
the minimum number of nodes intersecting the query on
d dimensions.

4 Fault Tolerance

When failure of one node occurs, problems arise due to
an outdated routing table and the fact that the data
set assigned to the failed node will be unavailable. To
enhance fault tolerance, most distributed data indexing
schemes use replication based mechanisms. Data redun-
dancy is part of our distributed spatial data structure
as explained in section 3.2. In d-dimensional space, our
data structure stores d copies of data in such a way that
one copy of each object resides on d different nodes. If
one network node fails, we use the involuntary depar-
ture of nodes methods in FissionE (Figure 7 in [8]).
Each node periodically checks whether its neighbours
are alive. When the failure of node k is detected by its
neighbour, two neighbour nodes y1 and y2 in the net-
work are found which have no neighbour node with less
data. They are merged into a new node ` and the neigh-
bour lists of ` and related nodes are updated. We now

Algorithm 2 Report data objects in a range query to
its issuer node.
1: procedure IssueQuery(rangeQuery Q)

// Find the dimension j with minimum range
QjU −QjL in query Q
// Lj and Uj are the lower bound and upper bound,
respectively, of all possible values for dimension j.

2: j ← MinRangeDim(Q) // Proper dimension for
query processing

3: dstIndex← dQjL − Lj

Uj − Lj
(n)e − 1

4: dstID ← HamiltonianPath[dstIndex]
5: FissionERouting(thisNode, dstID,Q, j)
6: end procedure
7: procedure FissionERouting(srcNode src, dstNode

dst, Rangequery Q, properD j)
// Assume that src = src1src2...srck and
dst = dst1dst2...dstm.

8: SP ←SuffixPrefix(src, dst)
// SP = SP 1SP 2...SP t the longest Kautz string that
is a prefix of dst and a suffix of src.

9: src.Routing(dst, k − t, SP,Q, j)
10: end procedure
11: procedure U.Routing(dstNode dst, pathLen L,

sufPre SP , rangeQuery Q, properD j)
12: if (L = 0) then
13: if (QjL > ThisNodejL) and (QjL <

ThisNodejU) then
// Report all objects in range where Oj < ThisNodejU .

14: ReportAnswer(LocalSearch(Q), Q.issuer)
// If not the last node in range

15: if (QjU > ThisNodejU) then
16: QjL ← ThisNodejU

// Route updated query to the next node in
Hamiltonian path

17:

FissionERouting(thisNode, thisNode.next,Q, j)
18: end if
19: end if
20: else if ∃Q ∈ Outneighbors(U) & Q = U2...UkX &

IsPrefix(SX, dst) then
// Routing method has been called i times.

21: S ← SX
22: Q.Routing(dst, L− 1, S,Q, j)
23: end if
24: end procedure

have one extra node (y1 or y2) to get the NodeID of the
failed node k and be responsible for its data. If a query
requests data from a failed node, all queries can be pro-
cessed completely. Our data structure can retrieve data
of failed nodes whenever failure of one or more (up to
d − 1) nodes occurs. Thus, our data structure can an-
swer orthogonal range search queries after simultaneous
failure of d− 1 nodes.

Theorem 2 In our fault tolerant data structure with
n nodes storing N points, the cost of recovering net-
work topology and data after failure of one node in d-

27th Canadian Conference on Computational Geometry, 2015

dimensional space is O(
dN

nB
log n) messages, where B is

the number of points that fit in one message.

5 Conclusion

We have designed a dynamic peer-to-peer data struc-
ture for d-dimensional data that is capable of process-
ing orthogonal range search on a set of N points. The
constant degree FissionE topology was used to coor-
dinate message passing among nodes. The worst case
range search cost is O(log n + m) messages plus re-
porting cost, where n is the number of nodes in the
peer-to-peer network, and m is the minimum number of
peers intersecting a query. A failure recovery method
was introduced that permits our data structure to sup-
port d-dimensional orthogonal range search when up to
d−1 nodes fail simultaneously. It remains an open ques-
tion how to provide load balancing of nodes in our data
structure if the distribution of data is changed due to
dynamic updates.

6 Acknowledgements

The authors would like to acknowledge the support of
the Natural Sciences and Engineering Research Council
(NSERC) of Canada and the UNB Faculty of Computer
Science.

References

[1] A. Andrzejak and Z. Xu. Scalable, efficient range
queries for grid information services. In Peer-to-Peer
Computing, 2002.(P2P 2002). Proceedings. Second In-
ternational Conference on, pages 33–40. IEEE, 2002.

[2] J. Aspnes and G. Shah. Skip graphs. ACM Transactions
on Algorithms (TALG), 3(4):37, 2007.

[3] A. R. Bharambe, M. Agrawal, and S. Seshan. Mer-
cury: supporting scalable multi-attribute range queries.
ACM SIGCOMM Computer Communication Review,
34(4):353–366, 2004.

[4] M. T. Goodrich, M. J. Nelson, and J. Z. Sun. The rain-
bow skip graph: a fault-tolerant constant-degree dis-
tributed data structure. In Proceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete al-
gorithm, pages 384–393. ACM, 2006.

[5] A. Gupta, D. Agrawal, and A. El Abbadi. Approx-
imate range selection queries in peer-to-peer systems.
In CIDR, volume 3, pages 141–151, 2003.

[6] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. Skipnet: A scalable overlay network with
practical locality properties. In USENIX Symposium on
Internet Technologies and Systems, volume 274. Seattle,
WA, USA, 2003.

[7] D. Li, J. Cao, X. Lu, and K. Chan. Efficient range query
processing in peer-to-peer systems. Knowledge and

Data Engineering, IEEE Transactions on, 21(1):78–91,
2009.

[8] D. Li, X. Lu, and J. Wu. Fissione: A scalable constant
degree and low congestion dht scheme based on kautz
graphs. In INFOCOM 2005. 24th Annual Joint Confer-
ence of the IEEE Computer and Communications So-
cieties. Proceedings IEEE, volume 3, pages 1677–1688.
IEEE, 2005.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network, vol-
ume 31. ACM, 2001.

[10] S. Ratnasamy, I. Stoica, and S. Shenker. Routing algo-
rithms for dhts: Some open questions. In Peer-to-peer
systems, pages 45–52. Springer, 2002.

[11] A. Rowstron and P. Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale
peer-to-peer systems. In Middleware 2001, pages 329–
350. Springer, 2001.

[12] C. Schmidt and M. Parashar. Enabling flexible queries
with guarantees in p2p systems. IEEE Internet Com-
puting, 8(3):19–26, 2004.

[13] Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou. Support-
ing multi-dimensional range queries in peer-to-peer sys-
tems. In Peer-to-Peer Computing, 2005. P2P 2005.
Fifth IEEE International Conference on, pages 173–
180. IEEE, 2005.

[14] R. Simion. Noncrossing partitions. Discrete Mathemat-
ics, 217(1):367–409, 2000.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. ACM SIG-
COMM Computer Communication Review, 31(4):149–
160, 2001.

[16] G. Tsatsanifos, D. Sacharidis, and T. Sellis. Mi-
das: multi-attribute indexing for distributed architec-
ture systems. In Advances in Spatial and Temporal
Databases, pages 168–185. Springer, 2011.

[17] K. C. Zatloukal and N. J. Harvey. Family trees: an
ordered dictionary with optimal congestion, locality,
degree, and search time. In Proceedings of the fif-
teenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 308–317. Society for Industrial and Ap-
plied Mathematics, 2004.

[18] Y. Zhang, X. Lu, and D. Li. Survey of dht topol-
ogy construction techniques in virtual computing en-
vironments. Science China Information sciences,
54(11):2221–2235, 2011.

[19] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. D. Kubiatowicz. Tapestry: A resilient
global-scale overlay for service deployment. Selected Ar-
eas in Communications, IEEE Journal on, 22(1):41–53,
2004.

CCCG 2015, Kingston, Ontario, August 10–12, 2015

Appendix

Proof of Theorem 1

Proof. Since the most efficient dimension j for the issued
query is selected at the beginning of the range search algo-
rithm, the worst case search cost occurs when the query is an
equal-sided box. Li et al. have proven in [8] that the diame-
ter of FissionE is O(logn). So, in the worst case, the cost of
finding the node containing the lower bound of the orthog-
onal range query QjL is O(logn). After that we need O(m)
messages to pass the updated query to the following nodes
in range using the current Hamiltonian path to find data ob-
jects intersecting the query. Adding the two costs gives the
worst case orthogonal range search cost for d-dimensional
points distributed on a peer-to-peer network of n nodes as
O(logn + m) messages plus reporting cost. �

Corollary 3 Assuming B points fit in one message, the cost
of reporting K points found in range back to the query issuer
node is O((K

B
+ m) logn) messages.

Proof. The cost to report the points in range is∑m
i=1d

Ki
B
eO(logn) messages, where Ki is the number of

points in range on node i and
∑m

i=1 Ki = K. As∑m
i=1d

Ki
B
eO(logn) ∈ O((K

B
+m) logn), we have the claimed

reporting cost. �

Proof of Theorem 2

Proof. It has been proven in [8] that when one node fails,
depart messages are propagated less than logn hops. So, the
cost of merging two nodes and maintenance of the overlay
network is O(logn). After that, each node finds which parts
of its own data were stored on the failed node, and sends this
data to the replacement node. If we assume that B points
can fit in one message, the data recovery process requires
O(dN

nB
logn) messages since when one node fails, dN

n
points

residing on the failed node are lost. So, O(dN
nB

) messages are
forwarded at most O(logn) hops to send back the lost data
to the replacement node. The overall cost is thus O(logn +
dN
nB

logn) = O(dN
nB

logn) messages. �

