|
- /**
- ******************************************************************************
- * @file stm32wbxx_hal_cryp.c
- * @author MCD Application Team
- * @brief CRYP HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities of the Cryptography (CRYP) peripheral:
- * + Initialization, de-initialization, set config and get config functions
- * + DES/TDES, AES processing functions
- * + DMA callback functions
- * + CRYP IRQ handler management
- * + Peripheral State functions
- *
- @verbatim
- ==============================================================================
- ##### How to use this driver #####
- ==============================================================================
- [..]
- The CRYP HAL driver can be used in CRYP or TinyAES peripheral as follows:
-
- (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
- (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()or __HAL_RCC_AES_CLK_ENABLE for TinyAES peripheral
- (##) In case of using interrupts (e.g. HAL_CRYP_Encrypt_IT())
- (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
- (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
- (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
- (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_Encrypt_DMA())
- (+++) Enable the DMAx interface clock using __RCC_DMAx_CLK_ENABLE()
- (+++) Configure and enable two DMA streams one for managing data transfer from
- memory to peripheral (input stream) and another stream for managing data
- transfer from peripheral to memory (output stream)
- (+++) Associate the initialized DMA handle to the CRYP DMA handle
- using __HAL_LINKDMA()
- (+++) Configure the priority and enable the NVIC for the transfer complete
- interrupt on the two DMA Streams. The output stream should have higher
- priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
-
- (#)Initialize the CRYP according to the specified parameters :
- (##) The data type: 1-bit, 8-bit, 16-bit or 32-bit.
- (##) The key size: 128, 192 or 256.
- (##) The AlgoMode DES/ TDES Algorithm ECB/CBC or AES Algorithm ECB/CBC/CTR/GCM or CCM.
- (##) The initialization vector (counter). It is not used in ECB mode.
- (##) The key buffer used for encryption/decryption.
- (+++) In some specific configurations, the key is written by the application
- code out of the HAL scope. In that case, user can still resort to the
- HAL APIs as usual but must make sure that pKey pointer is set to NULL.
- (##) The Header used only in AES GCM and CCM Algorithm for authentication.
- (##) The HeaderSize The size of header buffer in word.
- (##) The B0 block is the first authentication block used only in AES CCM mode.
-
- (#)Three processing (encryption/decryption) functions are available:
- (##) Polling mode: encryption and decryption APIs are blocking functions
- i.e. they process the data and wait till the processing is finished,
- e.g. HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
- (##) Interrupt mode: encryption and decryption APIs are not blocking functions
- i.e. they process the data under interrupt,
- e.g. HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
- (##) DMA mode: encryption and decryption APIs are not blocking functions
- i.e. the data transfer is ensured by DMA,
- e.g. HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
-
- (#)When the processing function is called at first time after HAL_CRYP_Init()
- the CRYP peripheral is configured and processes the buffer in input.
- At second call, no need to Initialize the CRYP, user have to get current configuration via
- HAL_CRYP_GetConfig() API, then only HAL_CRYP_SetConfig() is requested to set
- new parametres, finally user can start encryption/decryption.
-
- (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
-
- (#)To process a single message with consecutive calls to HAL_CRYP_Encrypt() or HAL_CRYP_Decrypt()
- without having to configure again the Key or the Initialization Vector between each API call,
- the field KeyIVConfigSkip of the initialization structure must be set to CRYP_KEYIVCONFIG_ONCE.
- Same is true for consecutive calls of HAL_CRYP_Encrypt_IT(), HAL_CRYP_Decrypt_IT(), HAL_CRYP_Encrypt_DMA()
- or HAL_CRYP_Decrypt_DMA().
-
- [..]
- The cryptographic processor supports following standards:
- (#) The data encryption standard (DES) and Triple-DES (TDES) supported only by CRYP1 peripheral:
- (##)64-bit data block processing
- (##) chaining modes supported :
- (+++) Electronic Code Book(ECB)
- (+++) Cipher Block Chaining (CBC)
- (##) keys length supported :64-bit, 128-bit and 192-bit.
- (#) The advanced encryption standard (AES) supported by CRYP1 & TinyAES peripheral:
- (##)128-bit data block processing
- (##) chaining modes supported :
- (+++) Electronic Code Book(ECB)
- (+++) Cipher Block Chaining (CBC)
- (+++) Counter mode (CTR)
- (+++) Galois/counter mode (GCM/GMAC)
- (+++) Counter with Cipher Block Chaining-Message(CCM)
- (##) keys length Supported :
- (+++) for CRYP1 peripheral: 128-bit, 192-bit and 256-bit.
- (+++) for TinyAES peripheral: 128-bit and 256-bit
-
- [..]
- (@) Specific care must be taken to format the key and the Initialization Vector IV!
-
- [..] If the key is defined as a 128-bit long array key[127..0] = {b127 ... b0} where
- b127 is the MSB and b0 the LSB, the key must be stored in MCU memory
- (+) as a sequence of words where the MSB word comes first (occupies the
- lowest memory address)
- (++) address n+0 : 0b b127 .. b120 b119 .. b112 b111 .. b104 b103 .. b96
- (++) address n+4 : 0b b95 .. b88 b87 .. b80 b79 .. b72 b71 .. b64
- (++) address n+8 : 0b b63 .. b56 b55 .. b48 b47 .. b40 b39 .. b32
- (++) address n+C : 0b b31 .. b24 b23 .. b16 b15 .. b8 b7 .. b0
- [..] Hereafter, another illustration when considering a 128-bit long key made of 16 bytes {B15..B0}.
- The 4 32-bit words that make the key must be stored as follows in MCU memory:
- (+) address n+0 : 0x B15 B14 B13 B12
- (+) address n+4 : 0x B11 B10 B9 B8
- (+) address n+8 : 0x B7 B6 B5 B4
- (+) address n+C : 0x B3 B2 B1 B0
- [..] which leads to the expected setting
- (+) AES_KEYR3 = 0x B15 B14 B13 B12
- (+) AES_KEYR2 = 0x B11 B10 B9 B8
- (+) AES_KEYR1 = 0x B7 B6 B5 B4
- (+) AES_KEYR0 = 0x B3 B2 B1 B0
-
- [..] Same format must be applied for a 256-bit long key made of 32 bytes {B31..B0}.
- The 8 32-bit words that make the key must be stored as follows in MCU memory:
- (+) address n+00 : 0x B31 B30 B29 B28
- (+) address n+04 : 0x B27 B26 B25 B24
- (+) address n+08 : 0x B23 B22 B21 B20
- (+) address n+0C : 0x B19 B18 B17 B16
- (+) address n+10 : 0x B15 B14 B13 B12
- (+) address n+14 : 0x B11 B10 B9 B8
- (+) address n+18 : 0x B7 B6 B5 B4
- (+) address n+1C : 0x B3 B2 B1 B0
- [..] which leads to the expected setting
- (+) AES_KEYR7 = 0x B31 B30 B29 B28
- (+) AES_KEYR6 = 0x B27 B26 B25 B24
- (+) AES_KEYR5 = 0x B23 B22 B21 B20
- (+) AES_KEYR4 = 0x B19 B18 B17 B16
- (+) AES_KEYR3 = 0x B15 B14 B13 B12
- (+) AES_KEYR2 = 0x B11 B10 B9 B8
- (+) AES_KEYR1 = 0x B7 B6 B5 B4
- (+) AES_KEYR0 = 0x B3 B2 B1 B0
-
- [..] Initialization Vector IV (4 32-bit words) format must follow the same as
- that of a 128-bit long key.
-
- [..] Note that key and IV registers are not sensitive to swap mode selection.
-
- [..] This section describes the AES Galois/counter mode (GCM) supported by both CRYP1 and TinyAES peripherals:
- (#) Algorithm supported :
- (##) Galois/counter mode (GCM)
- (##) Galois message authentication code (GMAC) :is exactly the same as
- GCM algorithm composed only by an header.
- (#) Four phases are performed in GCM :
- (##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing
- (##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash
- computation only.
- (##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream
- encryption + data XORing. It works in a similar way for ciphertext (C).
- (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data.
- (#) structure of message construction in GCM is defined as below :
- (##) 16 bytes Initial Counter Block (ICB)composed of IV and counter
- (##) The authenticated header A (also knows as Additional Authentication Data AAD)
- this part of the message is only authenticated, not encrypted.
- (##) The plaintext message P is both authenticated and encrypted as ciphertext.
- GCM standard specifies that ciphertext has same bit length as the plaintext.
- (##) The last block is composed of the length of A (on 64 bits) and the length of ciphertext
- (on 64 bits)
-
- [..] A more detailed description of the GCM message structure is available below.
-
- [..] This section describe The AES Counter with Cipher Block Chaining-Message
- Authentication Code (CCM) supported by both CRYP1 and TinyAES peripheral:
- (#) Specific parameters for CCM :
-
- (##) B0 block : follows NIST Special Publication 800-38C,
- (##) B1 block (header)
- (##) CTRx block : control blocks
-
- [..] A detailed description of the CCM message structure is available below.
-
- (#) Four phases are performed in CCM for CRYP1 peripheral:
- (##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing
- (##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash
- computation only.
- (##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream
- encryption + data XORing. It works in a similar way for ciphertext (C).
- (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data.
- (#) CCM in TinyAES peripheral:
- (##) To perform message payload encryption or decryption AES is configured in CTR mode.
- (##) For authentication two phases are performed :
- - Header phase: peripheral processes the Additional Authenticated Data (AAD) first, then the cleartext message
- only cleartext payload (not the ciphertext payload) is used and no outpout.
- (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data.
-
- *** Callback registration ***
- =============================================
-
- The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS when set to 1
- allows the user to configure dynamically the driver callbacks.
- Use Functions @ref HAL_CRYP_RegisterCallback() or HAL_CRYP_RegisterXXXCallback()
- to register an interrupt callback.
-
- Function @ref HAL_CRYP_RegisterCallback() allows to register following callbacks:
- (+) InCpltCallback : Input FIFO transfer completed callback.
- (+) OutCpltCallback : Output FIFO transfer completed callback.
- (+) ErrorCallback : callback for error detection.
- (+) MspInitCallback : CRYP MspInit.
- (+) MspDeInitCallback : CRYP MspDeInit.
- This function takes as parameters the HAL peripheral handle, the Callback ID
- and a pointer to the user callback function.
-
- Use function @ref HAL_CRYP_UnRegisterCallback() to reset a callback to the default
- weak function.
- @ref HAL_CRYP_UnRegisterCallback() takes as parameters the HAL peripheral handle,
- and the Callback ID.
- This function allows to reset following callbacks:
- (+) InCpltCallback : Input FIFO transfer completed callback.
- (+) OutCpltCallback : Output FIFO transfer completed callback.
- (+) ErrorCallback : callback for error detection.
- (+) MspInitCallback : CRYP MspInit.
- (+) MspDeInitCallback : CRYP MspDeInit.
-
- By default, after the @ref HAL_CRYP_Init() and when the state is HAL_CRYP_STATE_RESET
- all callbacks are set to the corresponding weak functions :
- examples @ref HAL_CRYP_InCpltCallback() , @ref HAL_CRYP_OutCpltCallback().
- Exception done for MspInit and MspDeInit functions that are
- reset to the legacy weak function in the @ref HAL_CRYP_Init()/ @ref HAL_CRYP_DeInit() only when
- these callbacks are null (not registered beforehand).
- if not, MspInit or MspDeInit are not null, the @ref HAL_CRYP_Init() / @ref HAL_CRYP_DeInit()
- keep and use the user MspInit/MspDeInit functions (registered beforehand)
-
- Callbacks can be registered/unregistered in HAL_CRYP_STATE_READY state only.
- Exception done MspInit/MspDeInit callbacks that can be registered/unregistered
- in HAL_CRYP_STATE_READY or HAL_CRYP_STATE_RESET state,
- thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
- In that case first register the MspInit/MspDeInit user callbacks
- using @ref HAL_CRYP_RegisterCallback() before calling @ref HAL_CRYP_DeInit()
- or @ref HAL_CRYP_Init() function.
-
- When The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS is set to 0 or
- not defined, the callback registration feature is not available and all callbacks
- are set to the corresponding weak functions.
-
-
- *** Suspend/Resume feature ***
- =============================================
-
- The compilation define USE_HAL_CRYP_SUSPEND_RESUME when set to 1
- allows the user to resort to the suspend/resume feature.
- A low priority block processing can be suspended to process a high priority block
- instead. When the high priority block processing is over, the low priority block
- processing can be resumed, restarting from the point where it was suspended. This
- feature is applicable only in non-blocking interrupt mode.
-
- [..] User must resort to HAL_CRYP_Suspend() to suspend the low priority block
- processing. This API manages the hardware block processing suspension and saves all the
- internal data that will be needed to restart later on. Upon HAL_CRYP_Suspend() completion,
- the user can launch the processing of any other block (high priority block processing).
-
- [..] When the high priority block processing is over, user must invoke HAL_CRYP_Resume()
- to resume the low priority block processing. Ciphering (or deciphering) restarts from
- the suspension point and ends as usual.
-
- [..] HAL_CRYP_Suspend() reports an error when the suspension request is sent too late
- (i.e when the low priority block processing is about to end). There is no use to
- suspend the tag generation processing for authentication algorithms.
-
- [..]
- (@) If the key is written out of HAL scope (case pKey pointer set to NULL by the user),
- the block processing suspension/resumption mechanism is NOT applicable.
-
- [..]
- (@) If the Key and Initialization Vector are configured only once and configuration is
- skipped for consecutive processings (case KeyIVConfigSkip set to CRYP_KEYIVCONFIG_ONCE),
- the block processing suspension/resumption mechanism is NOT applicable.
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>© Copyright (c) 2019 STMicroelectronics.
- * All rights reserved.</center></h2>
- *
- * This software component is licensed by ST under BSD 3-Clause license,
- * the "License"; You may not use this file except in compliance with the
- * License. You may obtain a copy of the License at:
- * opensource.org/licenses/BSD-3-Clause
- *
- ******************************************************************************
- */
-
- /* Includes ------------------------------------------------------------------*/
- #include "stm32wbxx_hal.h"
-
- /** @addtogroup STM32WBxx_HAL_Driver
- * @{
- */
-
- /** @addtogroup CRYP
- * @{
- */
-
-
- #ifdef HAL_CRYP_MODULE_ENABLED
-
- /* Private typedef -----------------------------------------------------------*/
- /* Private define ------------------------------------------------------------*/
- /** @addtogroup CRYP_Private_Defines
- * @{
- */
- #define CRYP_TIMEOUT_KEYPREPARATION 82U /* The latency of key preparation operation is 82 clock cycles.*/
- #define CRYP_TIMEOUT_GCMCCMINITPHASE 299U /* The latency of GCM/CCM init phase to prepare hash subkey is 299 clock cycles.*/
- #define CRYP_TIMEOUT_GCMCCMHEADERPHASE 290U /* The latency of GCM/CCM header phase is 290 clock cycles.*/
-
- #define CRYP_PHASE_READY 0x00000001U /*!< CRYP peripheral is ready for initialization. */
- #define CRYP_PHASE_PROCESS 0x00000002U /*!< CRYP peripheral is in processing phase */
- #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
- #define CRYP_PHASE_HEADER_SUSPENDED 0x00000004U /*!< GCM/GMAC/CCM header phase is suspended */
- #define CRYP_PHASE_PAYLOAD_SUSPENDED 0x00000005U /*!< GCM/CCM payload phase is suspended */
- #endif /* USE_HAL_CRYP_SUSPEND_RESUME */
-
- #define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode(Mode 1) */
- #define CRYP_OPERATINGMODE_KEYDERIVATION AES_CR_MODE_0 /*!< Key derivation mode only used when performing ECB and CBC decryptions (Mode 2) */
- #define CRYP_OPERATINGMODE_DECRYPT AES_CR_MODE_1 /*!< Decryption (Mode 3) */
- #define CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT AES_CR_MODE /*!< Key derivation and decryption only used when performing ECB and CBC decryptions (Mode 4) */
- #define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */
- #define CRYP_PHASE_HEADER AES_CR_GCMPH_0 /*!< GCM/GMAC or CCM header phase */
- #define CRYP_PHASE_PAYLOAD AES_CR_GCMPH_1 /*!< GCM(/CCM) payload phase */
- #define CRYP_PHASE_FINAL AES_CR_GCMPH /*!< GCM/GMAC or CCM final phase */
-
- /* CTR1 information to use in CCM algorithm */
- #define CRYP_CCM_CTR1_0 0x07FFFFFFU
- #define CRYP_CCM_CTR1_1 0xFFFFFF00U
- #define CRYP_CCM_CTR1_2 0x00000001U
-
- /**
- * @}
- */
-
- /* Private macro -------------------------------------------------------------*/
- /** @addtogroup CRYP_Private_Macros
- * @{
- */
-
- #define CRYP_SET_PHASE(__HANDLE__, __PHASE__) do{(__HANDLE__)->Instance->CR &= (uint32_t)(~AES_CR_GCMPH);\
- (__HANDLE__)->Instance->CR |= (uint32_t)(__PHASE__);\
- }while(0U)
-
- /**
- * @}
- */
-
- /* Private struct -------------------------------------------------------------*/
- /* Private variables ---------------------------------------------------------*/
- /* Private function prototypes -----------------------------------------------*/
- /** @addtogroup CRYP_Private_Functions
- * @{
- */
-
- static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
- static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
- static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
- static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
- static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize);
- static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp);
- static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
- static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp);
- static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp);
- static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp);
- static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
- static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp);
- static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
- static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
- static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp);
- static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
- static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcrypt, uint32_t Timeout);
- static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
- static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
- static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp);
- static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp);
- static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp);
- static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
- #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
- static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output);
- static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input);
- static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output);
- static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input);
- static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output, uint32_t KeySize);
- static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input, uint32_t KeySize);
- static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp);
- #endif /* USE_HAL_CRYP_SUSPEND_RESUME */
-
-
- /**
- * @}
- */
-
- /* Exported functions ---------------------------------------------------------*/
-
- /** @addtogroup CRYP_Exported_Functions
- * @{
- */
-
- /** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions
- * @brief Initialization and Configuration functions.
- *
- @verbatim
- ========================================================================================
- ##### Initialization, de-initialization and Set and Get configuration functions #####
- ========================================================================================
- [..] This section provides functions allowing to:
- (+) Initialize the CRYP
- (+) DeInitialize the CRYP
- (+) Initialize the CRYP MSP
- (+) DeInitialize the CRYP MSP
- (+) configure CRYP (HAL_CRYP_SetConfig) with the specified parameters in the CRYP_ConfigTypeDef
- Parameters which are configured in This section are :
- (+) Key size
- (+) Data Type : 32,16, 8 or 1bit
- (+) AlgoMode :
- - for CRYP1 peripheral :
- ECB and CBC in DES/TDES Standard
- ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard.
- - for TinyAES2 peripheral, only ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard are supported.
- (+) Get CRYP configuration (HAL_CRYP_GetConfig) from the specified parameters in the CRYP_HandleTypeDef
-
- @endverbatim
- * @{
- */
-
- /**
- * @brief Initializes the CRYP according to the specified
- * parameters in the CRYP_ConfigTypeDef and creates the associated handle.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
- {
- /* Check the CRYP handle allocation */
- if (hcryp == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check parameters */
- assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize));
- assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
- assert_param(IS_CRYP_ALGORITHM(hcryp->Init.Algorithm));
- assert_param(IS_CRYP_INIT(hcryp->Init.KeyIVConfigSkip));
-
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- if (hcryp->State == HAL_CRYP_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- hcryp->Lock = HAL_UNLOCKED;
-
- hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
- hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
- hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
-
- if (hcryp->MspInitCallback == NULL)
- {
- hcryp->MspInitCallback = HAL_CRYP_MspInit; /* Legacy weak MspInit */
- }
-
- /* Init the low level hardware */
- hcryp->MspInitCallback(hcryp);
- }
- #else
- if (hcryp->State == HAL_CRYP_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- hcryp->Lock = HAL_UNLOCKED;
-
- /* Init the low level hardware */
- HAL_CRYP_MspInit(hcryp);
- }
- #endif /* (USE_HAL_CRYP_REGISTER_CALLBACKS) */
-
- /* Set the key size (This bit field is do not care in the DES or TDES modes), data type and Algorithm */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
-
- /* Reset Error Code field */
- hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
-
- /* Reset peripheral Key and IV configuration flag */
- hcryp->KeyIVConfig = 0U;
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Set the default CRYP phase */
- hcryp->Phase = CRYP_PHASE_READY;
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief De-Initializes the CRYP peripheral.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
- {
- /* Check the CRYP handle allocation */
- if (hcryp == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Set the default CRYP phase */
- hcryp->Phase = CRYP_PHASE_READY;
-
- /* Reset CrypInCount and CrypOutCount */
- hcryp->CrypInCount = 0;
- hcryp->CrypOutCount = 0;
- hcryp->CrypHeaderCount = 0;
-
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
-
- if (hcryp->MspDeInitCallback == NULL)
- {
- hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; /* Legacy weak MspDeInit */
- }
- /* DeInit the low level hardware */
- hcryp->MspDeInitCallback(hcryp);
-
- #else
-
- /* DeInit the low level hardware: CLOCK, NVIC.*/
- HAL_CRYP_MspDeInit(hcryp);
-
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_RESET;
-
- /* Release Lock */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Configure the CRYP according to the specified
- * parameters in the CRYP_ConfigTypeDef
- * @param hcryp pointer to a CRYP_HandleTypeDef structure
- * @param pConf pointer to a CRYP_ConfigTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_SetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf)
- {
- /* Check the CRYP handle allocation */
- if ((hcryp == NULL) || (pConf == NULL))
- {
- return HAL_ERROR;
- }
-
- /* Check parameters */
- assert_param(IS_CRYP_KEYSIZE(pConf->KeySize));
- assert_param(IS_CRYP_DATATYPE(pConf->DataType));
- assert_param(IS_CRYP_ALGORITHM(pConf->Algorithm));
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Process locked */
- __HAL_LOCK(hcryp);
-
- /* Set CRYP parameters */
- hcryp->Init.DataType = pConf->DataType;
- hcryp->Init.pKey = pConf->pKey;
- hcryp->Init.Algorithm = pConf->Algorithm;
- hcryp->Init.KeySize = pConf->KeySize;
- hcryp->Init.pInitVect = pConf->pInitVect;
- hcryp->Init.Header = pConf->Header;
- hcryp->Init.HeaderSize = pConf->HeaderSize;
- hcryp->Init.B0 = pConf->B0;
- hcryp->Init.DataWidthUnit = pConf->DataWidthUnit;
-
- /* Set the key size (This bit field is do not care in the DES or TDES modes), data type and operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
-
- /*clear error flags*/
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR);
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Reset Error Code field */
- hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Set the default CRYP phase */
- hcryp->Phase = CRYP_PHASE_READY;
-
- /* Return function status */
- return HAL_OK;
- }
- else
- {
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Busy error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
- return HAL_ERROR;
- }
- }
-
- /**
- * @brief Get CRYP Configuration parameters in associated handle.
- * @param pConf pointer to a CRYP_ConfigTypeDef structure
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_GetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf)
- {
- /* Check the CRYP handle allocation */
- if ((hcryp == NULL) || (pConf == NULL))
- {
- return HAL_ERROR;
- }
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Process locked */
- __HAL_LOCK(hcryp);
-
- /* Get CRYP parameters */
- pConf->DataType = hcryp->Init.DataType;
- pConf->pKey = hcryp->Init.pKey;
- pConf->Algorithm = hcryp->Init.Algorithm;
- pConf->KeySize = hcryp->Init.KeySize ;
- pConf->pInitVect = hcryp->Init.pInitVect;
- pConf->Header = hcryp->Init.Header ;
- pConf->HeaderSize = hcryp->Init.HeaderSize;
- pConf->B0 = hcryp->Init.B0;
- pConf->DataWidthUnit = hcryp->Init.DataWidthUnit;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
- }
- else
- {
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Busy error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
- return HAL_ERROR;
- }
- }
- /**
- * @brief Initializes the CRYP MSP.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval None
- */
- __weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
- {
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hcryp);
-
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_CRYP_MspInit could be implemented in the user file
- */
- }
-
- /**
- * @brief DeInitializes CRYP MSP.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval None
- */
- __weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
- {
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hcryp);
-
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_CRYP_MspDeInit could be implemented in the user file
- */
- }
-
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /**
- * @brief Register a User CRYP Callback
- * To be used instead of the weak predefined callback
- * @param hcryp cryp handle
- * @param CallbackID ID of the callback to be registered
- * This parameter can be one of the following values:
- * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
- * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
- * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
- * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
- * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
- * @param pCallback pointer to the Callback function
- * @retval status
- */
- HAL_StatusTypeDef HAL_CRYP_RegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID, pCRYP_CallbackTypeDef pCallback)
- {
- HAL_StatusTypeDef status = HAL_OK;
-
- if (pCallback == NULL)
- {
- /* Update the error code */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
-
- return HAL_ERROR;
- }
- /* Process locked */
- __HAL_LOCK(hcryp);
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- switch (CallbackID)
- {
- case HAL_CRYP_INPUT_COMPLETE_CB_ID :
- hcryp->InCpltCallback = pCallback;
- break;
-
- case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
- hcryp->OutCpltCallback = pCallback;
- break;
-
- case HAL_CRYP_ERROR_CB_ID :
- hcryp->ErrorCallback = pCallback;
- break;
-
- case HAL_CRYP_MSPINIT_CB_ID :
- hcryp->MspInitCallback = pCallback;
- break;
-
- case HAL_CRYP_MSPDEINIT_CB_ID :
- hcryp->MspDeInitCallback = pCallback;
- break;
-
- default :
- /* Update the error code */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
- /* Return error status */
- status = HAL_ERROR;
- break;
- }
- }
- else if (hcryp->State == HAL_CRYP_STATE_RESET)
- {
- switch (CallbackID)
- {
- case HAL_CRYP_MSPINIT_CB_ID :
- hcryp->MspInitCallback = pCallback;
- break;
-
- case HAL_CRYP_MSPDEINIT_CB_ID :
- hcryp->MspDeInitCallback = pCallback;
- break;
-
- default :
- /* Update the error code */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
- /* Return error status */
- status = HAL_ERROR;
- break;
- }
- }
- else
- {
- /* Update the error code */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
- /* Return error status */
- status = HAL_ERROR;
- }
-
- /* Release Lock */
- __HAL_UNLOCK(hcryp);
-
- return status;
- }
-
- /**
- * @brief Unregister an CRYP Callback
- * CRYP callback is redirected to the weak predefined callback
- * @param hcryp cryp handle
- * @param CallbackID ID of the callback to be unregistered
- * This parameter can be one of the following values:
- * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
- * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
- * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
- * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
- * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
- * @retval status
- */
- HAL_StatusTypeDef HAL_CRYP_UnRegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID)
- {
- HAL_StatusTypeDef status = HAL_OK;
-
- /* Process locked */
- __HAL_LOCK(hcryp);
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- switch (CallbackID)
- {
- case HAL_CRYP_INPUT_COMPLETE_CB_ID :
- hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
- break;
-
- case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
- hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
- break;
-
- case HAL_CRYP_ERROR_CB_ID :
- hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
- break;
-
- case HAL_CRYP_MSPINIT_CB_ID :
- hcryp->MspInitCallback = HAL_CRYP_MspInit;
- break;
-
- case HAL_CRYP_MSPDEINIT_CB_ID :
- hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
- break;
-
- default :
- /* Update the error code */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
- /* Return error status */
- status = HAL_ERROR;
- break;
- }
- }
- else if (hcryp->State == HAL_CRYP_STATE_RESET)
- {
- switch (CallbackID)
- {
- case HAL_CRYP_MSPINIT_CB_ID :
- hcryp->MspInitCallback = HAL_CRYP_MspInit;
- break;
-
- case HAL_CRYP_MSPDEINIT_CB_ID :
- hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
- break;
-
- default :
- /* Update the error code */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
- /* Return error status */
- status = HAL_ERROR;
- break;
- }
- }
- else
- {
- /* Update the error code */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;;
- /* Return error status */
- status = HAL_ERROR;
- }
-
- /* Release Lock */
- __HAL_UNLOCK(hcryp);
-
- return status;
- }
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
-
- #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
- /**
- * @brief Request CRYP processing suspension when in interruption mode.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @note Set the handle field SuspendRequest to the appropriate value so that
- * the on-going CRYP processing is suspended as soon as the required
- * conditions are met.
- * @note HAL_CRYP_ProcessSuspend() can only be invoked when the processing is done
- * in non-blocking interrupt mode.
- * @note It is advised not to suspend the CRYP processing when the DMA controller
- * is managing the data transfer.
- * @retval None
- */
- void HAL_CRYP_ProcessSuspend(CRYP_HandleTypeDef *hcryp)
- {
- /* Set Handle SuspendRequest field */
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND;
- }
-
-
-
- /**
- * @brief CRYP processing suspension and peripheral internal parameters storage.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @note peripheral internal parameters are stored to be readily available when
- * suspended processing is resumed later on.
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_Suspend(CRYP_HandleTypeDef *hcryp)
- {
- /* Request suspension */
- HAL_CRYP_ProcessSuspend(hcryp);
-
- while ((HAL_CRYP_GetState(hcryp) != HAL_CRYP_STATE_SUSPENDED) && \
- (HAL_CRYP_GetState(hcryp) != HAL_CRYP_STATE_READY));
-
- if (HAL_CRYP_GetState(hcryp) == HAL_CRYP_STATE_READY)
- {
- /* Processing was already over or was about to end. No suspension done */
- return HAL_ERROR;
- }
- else
- {
- /* Suspend Processing */
-
- /* If authentication algorithms on-going, carry out first saving steps
- before disable the peripheral */
- if ((hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) || \
- (hcryp->Init.Algorithm == CRYP_AES_CCM))
- {
- /* Save Suspension registers */
- CRYP_Read_SuspendRegisters(hcryp, hcryp->SUSPxR_saved);
- /* Save Key */
- CRYP_Read_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize);
- /* Save IV */
- CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved);
- }
- /* Disable AES */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Save low-priority block CRYP handle parameters */
- hcryp->Init_saved = hcryp->Init;
- hcryp->pCrypInBuffPtr_saved = hcryp->pCrypInBuffPtr;
- hcryp->pCrypOutBuffPtr_saved = hcryp->pCrypOutBuffPtr;
- hcryp->CrypInCount_saved = hcryp->CrypInCount;
- hcryp->CrypOutCount_saved = hcryp->CrypOutCount;
- hcryp->Phase_saved = hcryp->Phase;
- hcryp->State_saved = hcryp->State;
- hcryp->Size_saved = ( (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) ? hcryp->Size /4 : hcryp->Size);
- hcryp->AutoKeyDerivation_saved = hcryp->AutoKeyDerivation;
- hcryp->CrypHeaderCount_saved = hcryp->CrypHeaderCount;
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
-
- if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \
- (hcryp->Init.Algorithm == CRYP_AES_CTR))
- {
- /* Save Initialisation Vector registers */
- CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved);
- }
-
- /* Save Control register */
- hcryp->CR_saved = hcryp->Instance->CR;
-
- }
- return HAL_OK;
- }
-
-
- /**
- * @brief CRYP processing resumption.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @note Processing restarts at the exact point where it was suspended, based
- * on the parameters saved at suspension time.
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_Resume(CRYP_HandleTypeDef *hcryp)
- {
- if (hcryp->State_saved != HAL_CRYP_STATE_SUSPENDED)
- {
- /* CRYP was not suspended */
- return HAL_ERROR;
- }
- else
- {
-
- /* Restore low-priority block CRYP handle parameters */
- hcryp->Init = hcryp->Init_saved;
- hcryp->State = hcryp->State_saved;
-
- /* Chaining algorithms case */
- if ((hcryp->Init_saved.Algorithm == CRYP_AES_ECB) || \
- (hcryp->Init_saved.Algorithm == CRYP_AES_CBC) || \
- (hcryp->Init_saved.Algorithm == CRYP_AES_CTR))
- {
- /* Restore low-priority block CRYP handle parameters */
- hcryp->AutoKeyDerivation = hcryp->AutoKeyDerivation_saved;
-
- if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \
- (hcryp->Init.Algorithm == CRYP_AES_CTR))
- {
- hcryp->Init.pInitVect = hcryp->IV_saved;
- }
- __HAL_CRYP_DISABLE(hcryp);
- if (HAL_CRYP_Init(hcryp) != HAL_OK)
- {
- return HAL_ERROR;
- }
- }
- else /* Authentication algorithms case */
- {
- /* Restore low-priority block CRYP handle parameters */
- hcryp->Phase = hcryp->Phase_saved;
- hcryp->CrypHeaderCount = hcryp->CrypHeaderCount_saved;
-
- /* Disable AES and write-back SUSPxR registers */;
- __HAL_CRYP_DISABLE(hcryp);
- /* Restore AES Suspend Registers */
- CRYP_Write_SuspendRegisters(hcryp, hcryp->SUSPxR_saved);
- /* Restore Control, Key and IV Registers, then enable AES */
- hcryp->Instance->CR = hcryp->CR_saved;
- CRYP_Write_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize);
- CRYP_Write_IVRegisters(hcryp, hcryp->IV_saved);
- __HAL_CRYP_ENABLE_IT(hcryp,CRYP_IT_CCFIE | CRYP_IT_ERRIE);
- __HAL_CRYP_ENABLE(hcryp);
-
- /* At the same time, set handle state back to READY to be able to resume the AES calculations
- without the processing APIs returning HAL_BUSY when called. */
- hcryp->State = HAL_CRYP_STATE_READY;
- }
-
-
- /* Resume low-priority block processing under IT */
- hcryp->ResumingFlag = 1U;
- if (READ_BIT(hcryp->CR_saved, AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
- {
- if (HAL_CRYP_Encrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, hcryp->pCrypOutBuffPtr_saved) != HAL_OK)
- {
- return HAL_ERROR;
- }
- }
- else
- {
- if (HAL_CRYP_Decrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, hcryp->pCrypOutBuffPtr_saved) != HAL_OK)
- {
- return HAL_ERROR;
- }
- }
- }
- return HAL_OK;
- }
- #endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */
-
- /**
- * @}
- */
-
- /** @defgroup CRYP_Exported_Functions_Group2 Encryption Decryption functions
- * @brief Encryption Decryption functions.
- *
- @verbatim
- ==============================================================================
- ##### Encrypt Decrypt functions #####
- ==============================================================================
- [..] This section provides API allowing to Encrypt/Decrypt Data following
- Standard DES/TDES or AES, and Algorithm configured by the user:
- (+) Standard DES/TDES only supported by CRYP1 peripheral, below list of Algorithm supported :
- - Electronic Code Book(ECB)
- - Cipher Block Chaining (CBC)
- (+) Standard AES supported by CRYP1 peripheral & TinyAES, list of Algorithm supported:
- - Electronic Code Book(ECB)
- - Cipher Block Chaining (CBC)
- - Counter mode (CTR)
- - Cipher Block Chaining (CBC)
- - Counter mode (CTR)
- - Galois/counter mode (GCM)
- - Counter with Cipher Block Chaining-Message(CCM)
- [..] Three processing functions are available:
- (+) Polling mode : HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
- (+) Interrupt mode : HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
- (+) DMA mode : HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
-
- @endverbatim
- * @{
- */
-
- /* GCM message structure additional details
-
- ICB
- +-------------------------------------------------------+
- | Initialization vector (IV) | Counter |
- |----------------|----------------|-----------|---------|
- 127 95 63 31 0
-
-
- Bit Number Register Contents
- ---------- --------------- -----------
- 127 ...96 CRYP_IV1R[31:0] ICB[127:96]
- 95 ...64 CRYP_IV1L[31:0] B0[95:64]
- 63 ... 32 CRYP_IV0R[31:0] ICB[63:32]
- 31 ... 0 CRYP_IV0L[31:0] ICB[31:0], where 32-bit counter= 0x2
-
-
-
- GCM last block definition
- +-------------------------------------------------------------------+
- | Bit[0] | Bit[32] | Bit[64] | Bit[96] |
- |-----------|--------------------|-----------|----------------------|
- | 0x0 | Header length[31:0]| 0x0 | Payload length[31:0] |
- |-----------|--------------------|-----------|----------------------|
-
- */
-
- /* CCM message blocks description
-
- (##) B0 block : According to NIST Special Publication 800-38C,
- The first block B0 is formatted as follows, where l(m) is encoded in
- most-significant-byte first order:
-
- Octet Number Contents
- ------------ ---------
- 0 Flags
- 1 ... 15-q Nonce N
- 16-q ... 15 Q
-
- the Flags field is formatted as follows:
-
- Bit Number Contents
- ---------- ----------------------
- 7 Reserved (always zero)
- 6 Adata
- 5 ... 3 (t-2)/2
- 2 ... 0 [q-1]3
-
- - Q: a bit string representation of the octet length of P (plaintext)
- - q The octet length of the binary representation of the octet length of the payload
- - A nonce (N), n The octet length of the where n+q=15.
- - Flags: most significant octet containing four flags for control information,
- - t The octet length of the MAC.
- (##) B1 block (header) : associated data length(a) concatenated with Associated Data (A)
- the associated data length expressed in bytes (a) defined as below:
- - If 0 < a < 216-28, then it is encoded as [a]16, i.e. two octets
- - If 216-28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, i.e. six octets
- - If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, i.e. ten octets
- (##) CTRx block : control blocks
- - Generation of CTR1 from first block B0 information :
- equal to B0 with first 5 bits zeroed and most significant bits storing octet
- length of P also zeroed, then incremented by one
-
- Bit Number Register Contents
- ---------- --------------- -----------
- 127 ...96 CRYP_IV1R[31:0] B0[127:96], where Q length bits are set to 0, except for
- bit 0 that is set to 1
- 95 ...64 CRYP_IV1L[31:0] B0[95:64]
- 63 ... 32 CRYP_IV0R[31:0] B0[63:32]
- 31 ... 0 CRYP_IV0L[31:0] B0[31:0], where flag bits set to 0
-
- - Generation of CTR0: same as CTR1 with bit[0] set to zero.
-
- */
-
- /**
- * @brief Encryption mode.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Input Pointer to the input buffer (plaintext)
- * @param Size Length of the plaintext buffer in word.
- * @param Output Pointer to the output buffer(ciphertext)
- * @param Timeout Specify Timeout value
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, uint32_t Timeout)
- {
- uint32_t algo;
- HAL_StatusTypeDef status;
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Change state Busy */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Process locked */
- __HAL_LOCK(hcryp);
-
- /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
- hcryp->CrypInCount = 0U;
- hcryp->CrypOutCount = 0U;
- hcryp->pCrypInBuffPtr = Input;
- hcryp->pCrypOutBuffPtr = Output;
-
- /* Calculate Size parameter in Byte*/
- if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
- {
- hcryp->Size = Size * 4U;
- }
- else
- {
- hcryp->Size = Size;
- }
-
- /* Set the operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
-
- /* algo get algorithm selected */
- algo = hcryp->Instance->CR & AES_CR_CHMOD;
-
- switch (algo)
- {
-
- case CRYP_AES_ECB:
- case CRYP_AES_CBC:
- case CRYP_AES_CTR:
-
- /* AES encryption */
- status = CRYP_AES_Encrypt(hcryp, Timeout);
- break;
-
- case CRYP_AES_GCM_GMAC:
-
- /* AES GCM encryption */
- status = CRYP_AESGCM_Process(hcryp, Timeout) ;
- break;
-
- case CRYP_AES_CCM:
-
- /* AES CCM encryption */
- status = CRYP_AESCCM_Process(hcryp, Timeout);
- break;
-
- default:
- hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
- status = HAL_ERROR;
- break;
- }
-
- if (status == HAL_OK)
- {
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- }
- }
- else
- {
- /* Busy error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
- status = HAL_ERROR;
- }
-
- /* Return function status */
- return status;
- }
-
- /**
- * @brief Decryption mode.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Input Pointer to the input buffer (ciphertext )
- * @param Size Length of the plaintext buffer in word.
- * @param Output Pointer to the output buffer(plaintext)
- * @param Timeout Specify Timeout value
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, uint32_t Timeout)
- {
- HAL_StatusTypeDef status;
- uint32_t algo;
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Change state Busy */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Process locked */
- __HAL_LOCK(hcryp);
-
- /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
- hcryp->CrypInCount = 0U;
- hcryp->CrypOutCount = 0U;
- hcryp->pCrypInBuffPtr = Input;
- hcryp->pCrypOutBuffPtr = Output;
-
- /* Calculate Size parameter in Byte*/
- if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
- {
- hcryp->Size = Size * 4U;
- }
- else
- {
- hcryp->Size = Size;
- }
-
- /* Set Decryption operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
-
- /* algo get algorithm selected */
- algo = hcryp->Instance->CR & AES_CR_CHMOD;
-
- switch (algo)
- {
-
- case CRYP_AES_ECB:
- case CRYP_AES_CBC:
- case CRYP_AES_CTR:
-
- /* AES decryption */
- status = CRYP_AES_Decrypt(hcryp, Timeout);
- break;
-
- case CRYP_AES_GCM_GMAC:
-
- /* AES GCM decryption */
- status = CRYP_AESGCM_Process(hcryp, Timeout) ;
- break;
-
- case CRYP_AES_CCM:
-
- /* AES CCM decryption */
- status = CRYP_AESCCM_Process(hcryp, Timeout);
- break;
-
- default:
- hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
- status = HAL_ERROR;
- break;
- }
-
- if (status == HAL_OK)
- {
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- }
- }
- else
- {
- /* Busy error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
- status = HAL_ERROR;
- }
-
- /* Return function status */
- return status;
- }
-
- /**
- * @brief Encryption in interrupt mode.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Input Pointer to the input buffer (plaintext)
- * @param Size Length of the plaintext buffer in word
- * @param Output Pointer to the output buffer(ciphertext)
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
- {
- HAL_StatusTypeDef status;
- uint32_t algo;
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Change state Busy */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Process locked */
- __HAL_LOCK(hcryp);
-
- /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
- #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
- if (hcryp->ResumingFlag == 1U)
- {
- hcryp->ResumingFlag = 0U;
- if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED)
- {
- hcryp->CrypInCount = hcryp->CrypInCount_saved;
- hcryp->CrypOutCount = hcryp->CrypOutCount_saved;
- }
- else
- {
- hcryp->CrypInCount = 0U;
- hcryp->CrypOutCount = 0U;
- }
- }
- else
- #endif /* USE_HAL_CRYP_SUSPEND_RESUME */
- {
- hcryp->CrypInCount = 0U;
- hcryp->CrypOutCount = 0U;
- }
-
- hcryp->pCrypInBuffPtr = Input;
- hcryp->pCrypOutBuffPtr = Output;
-
- /* Calculate Size parameter in Byte*/
- if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
- {
- hcryp->Size = Size * 4U;
- }
- else
- {
- hcryp->Size = Size;
- }
-
- /* Set encryption operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
-
- /* algo get algorithm selected */
- algo = hcryp->Instance->CR & AES_CR_CHMOD;
-
- switch (algo)
- {
-
- case CRYP_AES_ECB:
- case CRYP_AES_CBC:
- case CRYP_AES_CTR:
-
- /* AES encryption */
- status = CRYP_AES_Encrypt_IT(hcryp);
- break;
-
- case CRYP_AES_GCM_GMAC:
-
- /* AES GCM encryption */
- status = CRYP_AESGCM_Process_IT(hcryp) ;
- break;
-
- case CRYP_AES_CCM:
-
- /* AES CCM encryption */
- status = CRYP_AESCCM_Process_IT(hcryp);
- break;
-
- default:
- hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
- status = HAL_ERROR;
- break;
- }
- }
- else
- {
- /* Busy error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
- status = HAL_ERROR;
- }
-
- /* Return function status */
- return status;
- }
-
- /**
- * @brief Decryption in interrupt mode.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Input Pointer to the input buffer (ciphertext )
- * @param Size Length of the plaintext buffer in word.
- * @param Output Pointer to the output buffer(plaintext)
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
- {
- HAL_StatusTypeDef status;
- uint32_t algo;
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Change state Busy */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Process locked */
- __HAL_LOCK(hcryp);
-
- /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
- #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
- if (hcryp->ResumingFlag == 1U)
- {
- hcryp->ResumingFlag = 0U;
- if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED)
- {
- hcryp->CrypInCount = hcryp->CrypInCount_saved;
- hcryp->CrypOutCount = hcryp->CrypOutCount_saved;
- }
- else
- {
- hcryp->CrypInCount = 0U;
- hcryp->CrypOutCount = 0U;
- }
- }
- else
- #endif /* USE_HAL_CRYP_SUSPEND_RESUME */
- {
- hcryp->CrypInCount = 0U;
- hcryp->CrypOutCount = 0U;
- }
- hcryp->pCrypInBuffPtr = Input;
- hcryp->pCrypOutBuffPtr = Output;
-
- /* Calculate Size parameter in Byte*/
- if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
- {
- hcryp->Size = Size * 4U;
- }
- else
- {
- hcryp->Size = Size;
- }
-
- /* Set decryption operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
-
- /* algo get algorithm selected */
- algo = hcryp->Instance->CR & AES_CR_CHMOD;
-
- switch (algo)
- {
-
- case CRYP_AES_ECB:
- case CRYP_AES_CBC:
- case CRYP_AES_CTR:
-
- /* AES decryption */
- status = CRYP_AES_Decrypt_IT(hcryp);
- break;
-
- case CRYP_AES_GCM_GMAC:
-
- /* AES GCM decryption */
- status = CRYP_AESGCM_Process_IT(hcryp) ;
- break;
-
- case CRYP_AES_CCM:
-
- /* AES CCM decryption */
- status = CRYP_AESCCM_Process_IT(hcryp);
- break;
-
- default:
- hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
- status = HAL_ERROR;
- break;
- }
- }
- else
- {
- /* Busy error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
- status = HAL_ERROR;
- }
-
- /* Return function status */
- return status;
- }
-
- /**
- * @brief Encryption in DMA mode.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Input Pointer to the input buffer (plaintext)
- * @param Size Length of the plaintext buffer in word.
- * @param Output Pointer to the output buffer(ciphertext)
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
- {
- HAL_StatusTypeDef status;
- uint32_t algo;
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Change state Busy */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Process locked */
- __HAL_LOCK(hcryp);
-
- /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
- hcryp->CrypInCount = 0U;
- hcryp->CrypOutCount = 0U;
- hcryp->pCrypInBuffPtr = Input;
- hcryp->pCrypOutBuffPtr = Output;
-
- /* Calculate Size parameter in Byte*/
- if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
- {
- hcryp->Size = Size * 4U;
- }
- else
- {
- hcryp->Size = Size;
- }
-
- /* Set encryption operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
-
- /* algo get algorithm selected */
- algo = hcryp->Instance->CR & AES_CR_CHMOD;
-
- switch (algo)
- {
-
- case CRYP_AES_ECB:
- case CRYP_AES_CBC:
- case CRYP_AES_CTR:
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- }
- }
-
- if (DoKeyIVConfig == 1U)
- {
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Set the Initialization Vector*/
- if (hcryp->Init.Algorithm != CRYP_AES_ECB)
- {
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
- }
- } /* if (DoKeyIVConfig == 1U) */
-
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- /* Start DMA process transfer for AES */
- CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
- status = HAL_OK;
- break;
-
- case CRYP_AES_GCM_GMAC:
-
- /* AES GCM encryption */
- status = CRYP_AESGCM_Process_DMA(hcryp) ;
- break;
-
- case CRYP_AES_CCM:
-
- /* AES CCM encryption */
- status = CRYP_AESCCM_Process_DMA(hcryp);
- break;
-
- default:
- hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
- status = HAL_ERROR;
- break;
- }
- }
- else
- {
- /* Busy error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
- status = HAL_ERROR;
- }
-
- /* Return function status */
- return status;
- }
-
- /**
- * @brief Decryption in DMA mode.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Input Pointer to the input buffer (ciphertext )
- * @param Size Length of the plaintext buffer in word
- * @param Output Pointer to the output buffer(plaintext)
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYP_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
- {
- HAL_StatusTypeDef status;
- uint32_t algo;
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
-
- /* Change state Busy */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Process locked */
- __HAL_LOCK(hcryp);
-
- /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
- hcryp->CrypInCount = 0U;
- hcryp->CrypOutCount = 0U;
- hcryp->pCrypInBuffPtr = Input;
- hcryp->pCrypOutBuffPtr = Output;
-
- /* Calculate Size parameter in Byte*/
- if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
- {
- hcryp->Size = Size * 4U;
- }
- else
- {
- hcryp->Size = Size;
- }
-
- /* Set decryption operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
-
- /* algo get algorithm selected */
- algo = hcryp->Instance->CR & AES_CR_CHMOD;
-
- switch (algo)
- {
-
- case CRYP_AES_ECB:
- case CRYP_AES_CBC:
- case CRYP_AES_CTR:
-
- /* AES decryption */
- status = CRYP_AES_Decrypt_DMA(hcryp);
- break;
-
- case CRYP_AES_GCM_GMAC:
-
- /* AES GCM decryption */
- status = CRYP_AESGCM_Process_DMA(hcryp) ;
- break;
-
- case CRYP_AES_CCM:
-
- /* AES CCM decryption */
- status = CRYP_AESCCM_Process_DMA(hcryp);
- break;
-
- default:
- hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
- status = HAL_ERROR;
- break;
- }
- }
- else
- {
- /* Busy error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
- status = HAL_ERROR;
- }
- /* Return function status */
- return status;
- }
-
- /**
- * @}
- */
-
- /** @defgroup CRYP_Exported_Functions_Group3 CRYP IRQ handler management
- * @brief CRYP IRQ handler.
- *
- @verbatim
- ==============================================================================
- ##### CRYP IRQ handler management #####
- ==============================================================================
- [..] This section provides CRYP IRQ handler and callback functions.
- (+) HAL_CRYP_IRQHandler CRYP interrupt request
- (+) HAL_CRYP_InCpltCallback input data transfer complete callback
- (+) HAL_CRYP_OutCpltCallback output data transfer complete callback
- (+) HAL_CRYP_ErrorCallback CRYP error callback
- (+) HAL_CRYP_GetState return the CRYP state
- (+) HAL_CRYP_GetError return the CRYP error code
- @endverbatim
- * @{
- */
-
- /**
- * @brief This function handles cryptographic interrupt request.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval None
- */
- void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
- {
-
- /* Check if error occurred */
- if (__HAL_CRYP_GET_IT_SOURCE(hcryp,CRYP_IT_ERRIE) != RESET)
- {
- /* If write Error occurred */
- if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_IT_WRERR) != RESET)
- {
- hcryp->ErrorCode |= HAL_CRYP_ERROR_WRITE;
- }
- /* If read Error occurred */
- if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_IT_RDERR) != RESET)
- {
- hcryp->ErrorCode |= HAL_CRYP_ERROR_READ;
- }
- }
-
- if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_IT_CCF) != RESET)
- {
- if(__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_CCFIE) != RESET)
- {
- /* Clear computation complete flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
- {
-
- /* if header phase */
- if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER)
- {
- CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
- }
- else /* if payload phase */
- {
- CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
- }
- }
- else if (hcryp->Init.Algorithm == CRYP_AES_CCM)
- {
- /* if header phase */
- if (hcryp->Init.HeaderSize >= hcryp->CrypHeaderCount)
- {
- CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
- }
- else /* if payload phase */
- {
- CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
- }
- }
- else /* AES Algorithm ECB,CBC or CTR*/
- {
- CRYP_AES_IT(hcryp);
- }
- }
- }
- }
-
- /**
- * @brief Return the CRYP error code.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for the CRYP peripheral
- * @retval CRYP error code
- */
- uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp)
- {
- return hcryp->ErrorCode;
- }
-
- /**
- * @brief Returns the CRYP state.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @retval HAL state
- */
- HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
- {
- return hcryp->State;
- }
-
- /**
- * @brief Input FIFO transfer completed callback.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @retval None
- */
- __weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
- {
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hcryp);
-
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_CRYP_InCpltCallback could be implemented in the user file
- */
- }
-
- /**
- * @brief Output FIFO transfer completed callback.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @retval None
- */
- __weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
- {
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hcryp);
-
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_CRYP_OutCpltCallback could be implemented in the user file
- */
- }
-
- /**
- * @brief CRYP error callback.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @retval None
- */
- __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
- {
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hcryp);
-
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_CRYP_ErrorCallback could be implemented in the user file
- */
- }
- /**
- * @}
- */
-
- /**
- * @}
- */
-
- /* Private functions ---------------------------------------------------------*/
- /** @addtogroup CRYP_Private_Functions
- * @{
- */
-
- /**
- * @brief Encryption in ECB/CBC & CTR Algorithm with AES Standard
- * @param hcryp pointer to a CRYP_HandleTypeDef structure
- * @param Timeout specify Timeout value
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
- {
- uint16_t incount; /* Temporary CrypInCount Value */
- uint16_t outcount; /* Temporary CrypOutCount Value */
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- }
- }
-
- if (DoKeyIVConfig == 1U)
- {
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- if (hcryp->Init.Algorithm != CRYP_AES_ECB)
- {
- /* Set the Initialization Vector*/
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
- }
- } /* if (DoKeyIVConfig == 1U) */
-
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- /* Enable CRYP */
- __HAL_CRYP_ENABLE(hcryp);
-
- incount = hcryp->CrypInCount;
- outcount = hcryp->CrypOutCount;
- while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
- {
- /* Write plain Ddta and get cipher data */
- CRYP_AES_ProcessData(hcryp, Timeout);
- incount = hcryp->CrypInCount;
- outcount = hcryp->CrypOutCount;
- }
-
- /* Disable CRYP */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Encryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp)
- {
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- }
- }
-
- if (DoKeyIVConfig == 1U)
- {
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- if (hcryp->Init.Algorithm != CRYP_AES_ECB)
- {
- /* Set the Initialization Vector*/
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
- }
- } /* if (DoKeyIVConfig == 1U) */
-
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- if (hcryp->Size != 0U)
- {
-
- /* Enable computation complete flag and error interrupts */
- __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
-
- /* Enable CRYP */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Write the input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- else
- {
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Decryption in ECB/CBC & CTR mode with AES Standard
- * @param hcryp pointer to a CRYP_HandleTypeDef structure
- * @param Timeout Specify Timeout value
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
- {
- uint16_t incount; /* Temporary CrypInCount Value */
- uint16_t outcount; /* Temporary CrypOutCount Value */
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- }
- }
-
- if (DoKeyIVConfig == 1U)
- {
- /* Key preparation for ECB/CBC */
- if (hcryp->Init.Algorithm != CRYP_AES_CTR) /*ECB or CBC*/
- {
- if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
- {
- /* Set key preparation for decryption operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
-
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Enable CRYP */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Wait for CCF flag to be raised */
- if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state & error code*/
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /* Return to decryption operating mode(Mode 3)*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
- }
- else /*Mode 4 : decryption & Key preparation*/
- {
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Set decryption & Key preparation operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
- }
- }
- else /*Algorithm CTR */
- {
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
- }
-
- /* Set IV */
- if (hcryp->Init.Algorithm != CRYP_AES_ECB)
- {
- /* Set the Initialization Vector*/
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
- }
- } /* if (DoKeyIVConfig == 1U) */
-
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- /* Enable CRYP */
- __HAL_CRYP_ENABLE(hcryp);
-
- incount = hcryp->CrypInCount;
- outcount = hcryp->CrypOutCount;
- while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
- {
- /* Write plain data and get cipher data */
- CRYP_AES_ProcessData(hcryp, Timeout);
- incount = hcryp->CrypInCount;
- outcount = hcryp->CrypOutCount;
- }
-
- /* Disable CRYP */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Return function status */
- return HAL_OK;
- }
- /**
- * @brief Decryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp)
- {
- __IO uint32_t count = 0U;
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- }
- }
-
- if (DoKeyIVConfig == 1U)
- {
- /* Key preparation for ECB/CBC */
- if (hcryp->Init.Algorithm != CRYP_AES_CTR)
- {
- if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
- {
- /* Set key preparation for decryption operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
-
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Enable CRYP */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Wait for CCF flag to be raised */
- count = CRYP_TIMEOUT_KEYPREPARATION;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /* Return to decryption operating mode(Mode 3)*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
- }
- else /*Mode 4 : decryption & key preparation*/
- {
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Set decryption & key preparation operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
- }
- }
- else /*Algorithm CTR */
- {
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
- }
-
- /* Set IV */
- if (hcryp->Init.Algorithm != CRYP_AES_ECB)
- {
- /* Set the Initialization Vector*/
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
- }
- } /* if (DoKeyIVConfig == 1U) */
-
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
- if (hcryp->Size != 0U)
- {
- /* Enable computation complete flag and error interrupts */
- __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
-
- /* Enable CRYP */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Write the input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- else
- {
- /* Process locked */
- __HAL_UNLOCK(hcryp);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
- }
-
- /* Return function status */
- return HAL_OK;
- }
- /**
- * @brief Decryption in ECB/CBC & CTR mode with AES Standard using DMA mode
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp)
- {
- __IO uint32_t count = 0U;
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- }
- }
-
- if (DoKeyIVConfig == 1U)
- {
- /* Key preparation for ECB/CBC */
- if (hcryp->Init.Algorithm != CRYP_AES_CTR)
- {
- if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 key preparation*/
- {
- /* Set key preparation for decryption operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
-
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Enable CRYP */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Wait for CCF flag to be raised */
- count = CRYP_TIMEOUT_KEYPREPARATION;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /* Return to decryption operating mode(Mode 3)*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
- }
- else /*Mode 4 : decryption & key preparation*/
- {
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Set decryption & Key preparation operating mode*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
- }
- }
- else /*Algorithm CTR */
- {
- /* Set the Key*/
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
- }
-
- if (hcryp->Init.Algorithm != CRYP_AES_ECB)
- {
- /* Set the Initialization Vector*/
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
- }
- } /* if (DoKeyIVConfig == 1U) */
-
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- if (hcryp->Size != 0U)
- {
- /* Set the input and output addresses and start DMA transfer */
- CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
- }
- else
- {
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
-
- /**
- * @brief DMA CRYP input data process complete callback.
- * @param hdma DMA handle
- * @retval None
- */
- static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
- {
- CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- /* Stop the DMA transfers to the IN FIFO by clearing to "0" the DMAINEN */
- CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
-
- /* Call input data transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Input complete callback*/
- hcryp->InCpltCallback(hcryp);
- #else
- /*Call legacy weak Input complete callback*/
- HAL_CRYP_InCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
-
- /**
- * @brief DMA CRYP output data process complete callback.
- * @param hdma DMA handle
- * @retval None
- */
- static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
- {
- uint32_t count;
- uint32_t npblb;
- uint32_t lastwordsize;
- uint32_t temp; /* Temporary CrypOutBuff */
- uint32_t mode;
-
- CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- /* Stop the DMA transfers to the OUT FIFO by clearing to "0" the DMAOUTEN */
- CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
-
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /* Last block transfer in case of GCM or CCM with Size not %16*/
- if (((hcryp->Size) % 16U) != 0U)
- {
- /* set CrypInCount and CrypOutCount to exact number of word already computed via DMA */
- hcryp->CrypInCount = (hcryp->Size / 16U) * 4U;
- hcryp->CrypOutCount = hcryp->CrypInCount;
-
- /* Compute the number of padding bytes in last block of payload */
- npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
-
- mode = hcryp->Instance->CR & AES_CR_MODE;
- if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
- ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
- {
- /* Specify the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
- }
-
- /* Number of valid words (lastwordsize) in last block */
- if ((npblb % 4U) == 0U)
- {
- lastwordsize = (16U - npblb) / 4U;
- }
- else
- {
- lastwordsize = ((16U - npblb) / 4U) + 1U;
- }
-
- /* Last block optionally pad the data with zeros*/
- for (count = 0U; count < lastwordsize; count++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- while (count < 4U)
- {
- /* Pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- count++;
- }
-
- /*Wait on CCF flag*/
- count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
-
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered error callback*/
- hcryp->ErrorCallback(hcryp);
- #else
- /*Call legacy weak error callback*/
- HAL_CRYP_ErrorCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /*Read the output block from the output FIFO */
- for (count = 0U; count < 4U; count++)
- {
- /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
- temp = hcryp->Instance->DOUTR;
-
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
- hcryp->CrypOutCount++;
- }
- }
-
- if (((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC) && ((hcryp->Init.Algorithm & CRYP_AES_CCM) != CRYP_AES_CCM))
- {
- /* Disable CRYP (not allowed in GCM)*/
- __HAL_CRYP_DISABLE(hcryp);
- }
-
- /* Change the CRYP state to ready */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Call output data transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Output complete callback*/
- hcryp->OutCpltCallback(hcryp);
- #else
- /*Call legacy weak Output complete callback*/
- HAL_CRYP_OutCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
-
- /**
- * @brief DMA CRYP communication error callback.
- * @param hdma DMA handle
- * @retval None
- */
- static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
- {
- CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* DMA error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
-
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /* Call error callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered error callback*/
- hcryp->ErrorCallback(hcryp);
- #else
- /*Call legacy weak error callback*/
- HAL_CRYP_ErrorCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
-
- /**
- * @brief Set the DMA configuration and start the DMA transfer
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param inputaddr address of the input buffer
- * @param Size size of the input buffer, must be a multiple of 16.
- * @param outputaddr address of the output buffer
- * @retval None
- */
- static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
- {
- /* Set the CRYP DMA transfer complete callback */
- hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
-
- /* Set the DMA input error callback */
- hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
-
- /* Set the CRYP DMA transfer complete callback */
- hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
-
- /* Set the DMA output error callback */
- hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
-
- if ((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC)
- {
- /* Enable CRYP (not allowed in GCM & CCM)*/
- __HAL_CRYP_ENABLE(hcryp);
- }
-
- /* Enable the DMA input stream */
- if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK)
- {
- /* DMA error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
-
- /* Call error callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered error callback*/
- hcryp->ErrorCallback(hcryp);
- #else
- /*Call legacy weak error callback*/
- HAL_CRYP_ErrorCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- /* Enable the DMA output stream */
- if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size) != HAL_OK)
- {
- /* DMA error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
-
- /* Call error callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered error callback*/
- hcryp->ErrorCallback(hcryp);
- #else
- /*Call legacy weak error callback*/
- HAL_CRYP_ErrorCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- /* Enable In and Out DMA requests */
- SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));
- }
-
- /**
- * @brief Process Data: Write Input data in polling mode and used in AES functions.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Timeout Specify Timeout value
- * @retval None
- */
- static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
- {
-
- uint32_t temp; /* Temporary CrypOutBuff */
-
- /* Write the input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
-
- /* Wait for CCF flag to be raised */
- if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- /*Call registered error callback*/
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- hcryp->ErrorCallback(hcryp);
- #else
- /*Call legacy weak error callback*/
- HAL_CRYP_ErrorCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
- hcryp->CrypOutCount++;
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
- hcryp->CrypOutCount++;
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
- hcryp->CrypOutCount++;
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
- hcryp->CrypOutCount++;
-
- }
-
- /**
- * @brief Handle CRYP block input/output data handling under interruption.
- * @note The function is called under interruption only, once
- * interruptions have been enabled by HAL_CRYP_Encrypt_IT or HAL_CRYP_Decrypt_IT.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @retval HAL status
- */
- static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp)
- {
- uint32_t temp; /* Temporary CrypOutBuff */
-
- if (hcryp->State == HAL_CRYP_STATE_BUSY)
- {
- /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
- hcryp->CrypOutCount++;
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
- hcryp->CrypOutCount++;
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
- hcryp->CrypOutCount++;
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
- hcryp->CrypOutCount++;
-
- if (hcryp->CrypOutCount == (hcryp->Size / 4U))
- {
- /* Disable Computation Complete flag and errors interrupts */
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Disable CRYP */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Call Output transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Output complete callback*/
- hcryp->OutCpltCallback(hcryp);
- #else
- /*Call legacy weak Output complete callback*/
- HAL_CRYP_OutCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- else
- {
- #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
- /* If suspension flag has been raised, suspend processing
- only if not already at the end of the payload */
- if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
- {
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /* reset SuspendRequest */
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
- /* Disable Computation Complete Flag and Errors Interrupts */
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE|CRYP_IT_ERRIE);
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_SUSPENDED;
- /* Mark that the payload phase is suspended */
- hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
- }
- else
- #endif /* USE_HAL_CRYP_SUSPEND_RESUME */
- {
- /* Write the input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
-
- if (hcryp->CrypInCount == (hcryp->Size / 4U))
- {
- /* Call Input transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Input complete callback*/
- hcryp->InCpltCallback(hcryp);
- #else
- /*Call legacy weak Input complete callback*/
- HAL_CRYP_InCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
- }
- }
- else
- {
- /* Busy error code field */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered error callback*/
- hcryp->ErrorCallback(hcryp);
- #else
- /*Call legacy weak error callback*/
- HAL_CRYP_ErrorCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
-
- /**
- * @brief Writes Key in Key registers.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param KeySize Size of Key
- * @note If pKey is NULL, the Key registers are not written. This configuration
- * occurs when the key is written out of HAL scope.
- * @retval None
- */
- static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize)
- {
- if (hcryp->Init.pKey != NULL)
- {
- switch (KeySize)
- {
- case CRYP_KEYSIZE_256B:
- hcryp->Instance->KEYR7 = *(uint32_t *)(hcryp->Init.pKey);
- hcryp->Instance->KEYR6 = *(uint32_t *)(hcryp->Init.pKey + 1U);
- hcryp->Instance->KEYR5 = *(uint32_t *)(hcryp->Init.pKey + 2U);
- hcryp->Instance->KEYR4 = *(uint32_t *)(hcryp->Init.pKey + 3U);
- hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey + 4U);
- hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 5U);
- hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 6U);
- hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 7U);
- break;
- case CRYP_KEYSIZE_128B:
- hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey);
- hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 1U);
- hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 2U);
- hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 3U);
-
- break;
- default:
- break;
- }
- }
- }
-
- /**
- * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Timeout Timeout duration
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
- {
- uint32_t tickstart;
- uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ;
- uint32_t npblb;
- uint32_t temp; /* Temporary CrypOutBuff */
- uint32_t index;
- uint32_t lastwordsize;
- uint32_t incount; /* Temporary CrypInCount Value */
- uint32_t outcount; /* Temporary CrypOutCount Value */
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
- }
- }
- else
- {
- hcryp->SizesSum = hcryp->Size;
- }
-
- if (DoKeyIVConfig == 1U)
- {
-
- /* Reset CrypHeaderCount */
- hcryp->CrypHeaderCount = 0U;
-
- /****************************** Init phase **********************************/
-
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- /* Set the key */
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* just wait for hash computation */
- if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked & return error */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /************************ Header phase *************************************/
-
- if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
- {
- return HAL_ERROR;
- }
-
- /*************************Payload phase ************************************/
-
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- /* Select payload phase once the header phase is performed */
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
-
- } /* if (DoKeyIVConfig == 1U) */
-
- if ((hcryp->Size % 16U) != 0U)
- {
- /* recalculate wordsize */
- wordsize = ((wordsize / 4U) * 4U) ;
- }
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- /* Write input data and get output Data */
- incount = hcryp->CrypInCount;
- outcount = hcryp->CrypOutCount;
- while ((incount < wordsize) && (outcount < wordsize))
- {
- /* Write plain data and get cipher data */
- CRYP_AES_ProcessData(hcryp, Timeout);
-
- /* Check for the Timeout */
- if (Timeout != HAL_MAX_DELAY)
- {
- if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state & error code */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- incount = hcryp->CrypInCount;
- outcount = hcryp->CrypOutCount;
- }
-
- if ((hcryp->Size % 16U) != 0U)
- {
- /* Compute the number of padding bytes in last block of payload */
- npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
-
- /* Set Npblb in case of AES GCM payload encryption to get right tag*/
- if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
- {
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
- }
- /* Number of valid words (lastwordsize) in last block */
- if ((npblb % 4U) == 0U)
- {
- lastwordsize = (16U - npblb) / 4U;
- }
- else
- {
- lastwordsize = ((16U - npblb) / 4U) + 1U;
- }
- /* last block optionally pad the data with zeros*/
- for (index = 0U; index < lastwordsize; index ++)
- {
- /* Write the last Input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- while (index < 4U)
- {
- /* pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0U;
- index++;
- }
- /* Wait for CCF flag to be raised */
- if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
-
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered error callback*/
- hcryp->ErrorCallback(hcryp);
- #else
- /*Call legacy weak error callback*/
- HAL_CRYP_ErrorCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /*Read the output block from the output FIFO */
- for (index = 0U; index < 4U; index++)
- {
- /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
- temp = hcryp->Instance->DOUTR;
-
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
- hcryp->CrypOutCount++;
- }
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG in interrupt mode
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp)
- {
- __IO uint32_t count = 0U;
- uint32_t loopcounter;
- uint32_t lastwordsize;
- uint32_t npblb;
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
- if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED))
- {
- CRYP_PhaseProcessingResume(hcryp);
- return HAL_OK;
- }
- #endif /* USE_HAL_CRYP_SUSPEND_RESUME */
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
- }
- }
- else
- {
- hcryp->SizesSum = hcryp->Size;
- }
-
- /* Configure Key, IV and process message (header and payload) */
- if (DoKeyIVConfig == 1U)
- {
- /* Reset CrypHeaderCount */
- hcryp->CrypHeaderCount = 0U;
-
- /******************************* Init phase *********************************/
-
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- /* Set the key */
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* just wait for hash computation */
- count = CRYP_TIMEOUT_GCMCCMINITPHASE;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /***************************** Header phase *********************************/
-
- /* Select header phase */
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable computation complete flag and error interrupts */
- __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- if (hcryp->Init.HeaderSize == 0U) /*header phase is skipped*/
- {
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- /* Select payload phase once the header phase is performed */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
-
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
-
- /* Write the payload Input block in the IN FIFO */
- if (hcryp->Size == 0U)
- {
- /* Disable interrupts */
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- }
- else if (hcryp->Size >= 16U)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- if (hcryp->CrypInCount == (hcryp->Size / 4U))
- {
- /* Call Input transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Input complete callback*/
- hcryp->InCpltCallback(hcryp);
- #else
- /*Call legacy weak Input complete callback*/
- HAL_CRYP_InCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
- else /* Size < 16Bytes : first block is the last block*/
- {
- /* Workaround not implemented for TinyAES2*/
- /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
- Workaround is implemented in polling mode, so if last block of
- payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
-
-
- /* Compute the number of padding bytes in last block of payload */
- npblb = 16U - ((uint32_t)hcryp->Size);
-
- if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
- {
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
- }
-
- /* Number of valid words (lastwordsize) in last block */
- if ((npblb % 4U) == 0U)
- {
- lastwordsize = (16U - npblb) / 4U;
- }
- else
- {
- lastwordsize = ((16U - npblb) / 4U) + 1U;
- }
-
- /* last block optionally pad the data with zeros*/
- for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- while (loopcounter < 4U)
- {
- /* pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
- }
- }
- else if ((hcryp->Init.HeaderSize) < 4U)
- {
- for (loopcounter = 0U; loopcounter < hcryp->Init.HeaderSize ; loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- }
- while (loopcounter < 4U)
- {
- /* pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- /* Select payload phase once the header phase is performed */
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
-
- /* Call Input transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Input complete callback*/
- hcryp->InCpltCallback(hcryp);
- #else
- /*Call legacy weak Input complete callback*/
- HAL_CRYP_InCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- else
- {
- /* Write the input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- }
-
- } /* end of if (DoKeyIVConfig == 1U) */
- else /* Key and IV have already been configured,
- header has already been processed;
- only process here message payload */
- {
-
- /* Enable computation complete flag and error interrupts */
- __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
-
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
-
- /* Write the payload Input block in the IN FIFO */
- if (hcryp->Size == 0U)
- {
- /* Disable interrupts */
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- }
- else if (hcryp->Size >= 16U)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- if (hcryp->CrypInCount == (hcryp->Size / 4U))
- {
- /* Call Input transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Input complete callback*/
- hcryp->InCpltCallback(hcryp);
- #else
- /*Call legacy weak Input complete callback*/
- HAL_CRYP_InCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
- else /* Size < 16Bytes : first block is the last block*/
- {
- /* Workaround not implemented for TinyAES2*/
- /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
- Workaround is implemented in polling mode, so if last block of
- payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
-
-
- /* Compute the number of padding bytes in last block of payload */
- npblb = 16U - ((uint32_t)hcryp->Size);
-
- if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
- {
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
- }
-
- /* Number of valid words (lastwordsize) in last block */
- if ((npblb % 4U) == 0U)
- {
- lastwordsize = (16U - npblb) / 4U;
- }
- else
- {
- lastwordsize = ((16U - npblb) / 4U) + 1U;
- }
-
- /* last block optionally pad the data with zeros*/
- for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- while (loopcounter < 4U)
- {
- /* pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
- }
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
-
- /**
- * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG using DMA
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
- {
- __IO uint32_t count;
- uint16_t wordsize = hcryp->Size / 4U ;
- uint32_t index;
- uint32_t npblb;
- uint32_t lastwordsize;
- uint32_t temp; /* Temporary CrypOutBuff */
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
- }
- }
- else
- {
- hcryp->SizesSum = hcryp->Size;
- }
-
- if (DoKeyIVConfig == 1U)
- {
-
- /* Reset CrypHeaderCount */
- hcryp->CrypHeaderCount = 0U;
-
- /*************************** Init phase ************************************/
-
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- /* Set the key */
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* just wait for hash computation */
- count = CRYP_TIMEOUT_GCMCCMINITPHASE;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /************************ Header phase *************************************/
-
- if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
- {
- return HAL_ERROR;
- }
-
- /************************ Payload phase ************************************/
-
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
-
- /* Select payload phase once the header phase is performed */
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- } /* if (DoKeyIVConfig == 1U) */
-
- if (hcryp->Size == 0U)
- {
- /* Process unLocked */
- __HAL_UNLOCK(hcryp);
-
- /* Change the CRYP state and phase */
- hcryp->State = HAL_CRYP_STATE_READY;
- }
- else if (hcryp->Size >= 16U)
- {
- /*DMA transfer must not include the last block in case of Size is not %16 */
- wordsize = wordsize - (wordsize % 4U);
-
- /*DMA transfer */
- CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), wordsize, (uint32_t)(hcryp->pCrypOutBuffPtr));
- }
- else /* length of input data is < 16 */
- {
- /* Compute the number of padding bytes in last block of payload */
- npblb = 16U - (uint32_t)hcryp->Size;
-
- /* Set Npblb in case of AES GCM payload encryption to get right tag*/
- if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
- {
- /* Specify the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
- }
-
- /* Enable CRYP to start the final phase */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Number of valid words (lastwordsize) in last block */
- if ((npblb % 4U) == 0U)
- {
- lastwordsize = (16U - npblb) / 4U;
- }
- else
- {
- lastwordsize = ((16U - npblb) / 4U) + 1U;
- }
-
- /* last block optionally pad the data with zeros*/
- for (index = 0U; index < lastwordsize; index ++)
- {
- /* Write the last Input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- while (index < 4U)
- {
- /* pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0U;
- index++;
- }
- /* Wait for CCF flag to be raised */
- count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered error callback*/
- hcryp->ErrorCallback(hcryp);
- #else
- /*Call legacy weak error callback*/
- HAL_CRYP_ErrorCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /*Read the output block from the output FIFO */
- for (index = 0U; index < 4U; index++)
- {
- /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
- temp = hcryp->Instance->DOUTR;
-
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
- hcryp->CrypOutCount++;
- }
-
- /* Change the CRYP state to ready */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
-
- /**
- * @brief AES CCM encryption/decryption processing in polling mode
- * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Timeout Timeout duration
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
- {
- uint32_t tickstart;
- uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ;
- uint32_t loopcounter;
- uint32_t npblb;
- uint32_t lastwordsize;
- uint32_t temp; /* Temporary CrypOutBuff */
- uint32_t incount; /* Temporary CrypInCount Value */
- uint32_t outcount; /* Temporary CrypOutCount Value */
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
- }
- }
- else
- {
- hcryp->SizesSum = hcryp->Size;
- }
-
- if (DoKeyIVConfig == 1U)
- {
- /* Reset CrypHeaderCount */
- hcryp->CrypHeaderCount = 0U;
-
- /********************** Init phase ******************************************/
-
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- /* Set the key */
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Set the initialization vector (IV) with B0 */
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* just wait for hash computation */
- if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked & return error */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /************************ Header phase *************************************/
- /* Header block(B1) : associated data length expressed in bytes concatenated
- with Associated Data (A)*/
- if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
- {
- return HAL_ERROR;
- }
-
- /*************************Payload phase ************************************/
-
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- /* Select payload phase once the header phase is performed */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
-
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
-
- } /* if (DoKeyIVConfig == 1U) */
-
- if ((hcryp->Size % 16U) != 0U)
- {
- /* recalculate wordsize */
- wordsize = ((wordsize / 4U) * 4U) ;
- }
- /* Get tick */
- tickstart = HAL_GetTick();
-
- /* Write input data and get output data */
- incount = hcryp->CrypInCount;
- outcount = hcryp->CrypOutCount;
- while ((incount < wordsize) && (outcount < wordsize))
- {
- /* Write plain data and get cipher data */
- CRYP_AES_ProcessData(hcryp, Timeout);
-
- /* Check for the Timeout */
- if (Timeout != HAL_MAX_DELAY)
- {
- if (((HAL_GetTick() - tickstart) > Timeout) ||(Timeout == 0U))
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- incount = hcryp->CrypInCount;
- outcount = hcryp->CrypOutCount;
- }
-
- if ((hcryp->Size % 16U) != 0U)
- {
- /* Compute the number of padding bytes in last block of payload */
- npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
-
- if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT)
- {
- /* Set Npblb in case of AES CCM payload decryption to get right tag */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20);
-
- }
- /* Number of valid words (lastwordsize) in last block */
- if ((npblb % 4U) == 0U)
- {
- lastwordsize = (16U - npblb) / 4U;
- }
- else
- {
- lastwordsize = ((16U - npblb) / 4U) + 1U;
- }
-
- /* Write the last input block in the IN FIFO */
- for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter ++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
-
- /* Pad the data with zeros to have a complete block */
- while (loopcounter < 4U)
- {
- hcryp->Instance->DINR = 0U;
- loopcounter++;
- }
- /* just wait for hash computation */
- if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked & return error */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- for (loopcounter = 0U; loopcounter < 4U; loopcounter++)
- {
- /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
- temp = hcryp->Instance->DOUTR;
-
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
- hcryp->CrypOutCount++;
- }
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief AES CCM encryption/decryption process in interrupt mode
- * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp)
- {
- __IO uint32_t count = 0U;
- uint32_t loopcounter;
- uint32_t lastwordsize;
- uint32_t npblb;
- uint32_t mode;
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
- if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED))
- {
- CRYP_PhaseProcessingResume(hcryp);
- return HAL_OK;
- }
- #endif /* USE_HAL_CRYP_SUSPEND_RESUME */
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
- }
- }
- else
- {
- hcryp->SizesSum = hcryp->Size;
- }
-
- /* Configure Key, IV and process message (header and payload) */
- if (DoKeyIVConfig == 1U)
- {
- /* Reset CrypHeaderCount */
- hcryp->CrypHeaderCount = 0U;
-
- /********************** Init phase ******************************************/
-
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- /* Set the key */
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Set the initialization vector (IV) with B0 */
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* just wait for hash computation */
- count = CRYP_TIMEOUT_GCMCCMINITPHASE;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /***************************** Header phase *********************************/
-
- /* Select header phase */
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable computation complete flag and error interrupts */
- __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- if (hcryp->Init.HeaderSize == 0U) /*header phase is skipped*/
- {
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
- /* Select payload phase once the header phase is performed */
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
-
- if (hcryp->Init.Algorithm == CRYP_AES_CCM)
- {
- /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */
- hcryp->CrypHeaderCount++;
- }
- /* Write the payload Input block in the IN FIFO */
- if (hcryp->Size == 0U)
- {
- /* Disable interrupts */
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- }
- else if (hcryp->Size >= 16U)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
-
- if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
- {
- /* Call Input transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Input complete callback*/
- hcryp->InCpltCallback(hcryp);
- #else
- /*Call legacy weak Input complete callback*/
- HAL_CRYP_InCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
- else /* Size < 4 words : first block is the last block*/
- {
- /* Compute the number of padding bytes in last block of payload */
- npblb = 16U - (uint32_t)hcryp->Size;
-
- mode = hcryp->Instance->CR & AES_CR_MODE;
- if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
- ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
- {
- /* Specify the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
- }
-
- /* Number of valid words (lastwordsize) in last block */
- if ((npblb % 4U) == 0U)
- {
- lastwordsize = (16U - npblb) / 4U;
- }
- else
- {
- lastwordsize = ((16U - npblb) / 4U) + 1U;
- }
-
- /* Last block optionally pad the data with zeros*/
- for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- while (loopcounter < 4U)
- {
- /* Pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
- }
- }
- else if ((hcryp->Init.HeaderSize) < 4U) /*HeaderSize < 4 */
- {
- /* Last block optionally pad the data with zeros*/
- for (loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize % 4U); loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- }
- while (loopcounter < 4U)
- {
- /* pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
- }
- else
- {
- /* Write the input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- }
-
- } /* end of if (DoKeyIVConfig == 1U) */
- else /* Key and IV have already been configured,
- header has already been processed;
- only process here message payload */
- {
- /* Write the payload Input block in the IN FIFO */
- if (hcryp->Size == 0U)
- {
- /* Disable interrupts */
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- }
- else if (hcryp->Size >= 16U)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
-
- if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
- {
- /* Call Input transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Input complete callback*/
- hcryp->InCpltCallback(hcryp);
- #else
- /*Call legacy weak Input complete callback*/
- HAL_CRYP_InCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
- else /* Size < 4 words : first block is the last block*/
- {
- /* Compute the number of padding bytes in last block of payload */
- npblb = 16U - (uint32_t)hcryp->Size;
-
- mode = hcryp->Instance->CR & AES_CR_MODE;
- if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
- ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
- {
- /* Specify the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
- }
-
- /* Number of valid words (lastwordsize) in last block */
- if ((npblb % 4U) == 0U)
- {
- lastwordsize = (16U - npblb) / 4U;
- }
- else
- {
- lastwordsize = ((16U - npblb) / 4U) + 1U;
- }
-
- /* Last block optionally pad the data with zeros*/
- for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- while (loopcounter < 4U)
- {
- /* Pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
- }
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief AES CCM encryption/decryption process in DMA mode
- * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
- {
- __IO uint32_t count = 0U;
- uint16_t wordsize = hcryp->Size / 4U ;
- uint32_t index;
- uint32_t npblb;
- uint32_t lastwordsize;
- uint32_t temp; /* Temporary CrypOutBuff */
- uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
-
- if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
- {
- if (hcryp->KeyIVConfig == 1U)
- {
- /* If the Key and IV configuration has to be done only once
- and if it has already been done, skip it */
- DoKeyIVConfig = 0U;
- hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
- }
- else
- {
- /* If the Key and IV configuration has to be done only once
- and if it has not been done already, do it and set KeyIVConfig
- to keep track it won't have to be done again next time */
- hcryp->KeyIVConfig = 1U;
- hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
- }
- }
- else
- {
- hcryp->SizesSum = hcryp->Size;
- }
-
- if (DoKeyIVConfig == 1U)
- {
-
- /* Reset CrypHeaderCount */
- hcryp->CrypHeaderCount = 0U;
-
-
- /********************** Init phase ******************************************/
-
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- /* Set the key */
- CRYP_SetKey(hcryp, hcryp->Init.KeySize);
-
- /* Set the initialization vector (IV) with B0 */
- hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0);
- hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U);
- hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U);
- hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* just wait for hash computation */
- count = CRYP_TIMEOUT_GCMCCMINITPHASE;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
-
- /********************* Header phase *****************************************/
-
- if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
- {
- return HAL_ERROR;
- }
-
- /******************** Payload phase *****************************************/
-
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
-
- /* Select payload phase once the header phase is performed */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
-
- } /* if (DoKeyIVConfig == 1U) */
-
- if (hcryp->Size == 0U)
- {
- /* Process unLocked */
- __HAL_UNLOCK(hcryp);
-
- /* Change the CRYP state and phase */
- hcryp->State = HAL_CRYP_STATE_READY;
- }
- else if (hcryp->Size >= 16U)
- {
- /*DMA transfer must not include the last block in case of Size is not %16 */
- wordsize = wordsize - (wordsize % 4U);
-
- /*DMA transfer */
- CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), wordsize, (uint32_t)(hcryp->pCrypOutBuffPtr));
- }
- else /* length of input data is < 16 */
- {
- /* Compute the number of padding bytes in last block of payload */
- npblb = 16U - (uint32_t)hcryp->Size;
-
- /* Set Npblb in case of AES CCM payload decryption to get right tag*/
- if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT)
- {
- /* Specify the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
- }
-
- /* Number of valid words (lastwordsize) in last block */
- if ((npblb % 4U) == 0U)
- {
- lastwordsize = (16U - npblb) / 4U;
- }
- else
- {
- lastwordsize = ((16U - npblb) / 4U) + 1U;
- }
-
- /* last block optionally pad the data with zeros*/
- for (index = 0U; index < lastwordsize; index ++)
- {
- /* Write the last Input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- while (index < 4U)
- {
- /* pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0U;
- index++;
- }
- /* Wait for CCF flag to be raised */
- count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered error callback*/
- hcryp->ErrorCallback(hcryp);
- #else
- /*Call legacy weak error callback*/
- HAL_CRYP_ErrorCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /*Read the output block from the output FIFO */
- for (index = 0U; index < 4U; index++)
- {
- /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
- temp = hcryp->Instance->DOUTR;
-
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
- hcryp->CrypOutCount++;
- }
-
- /* Change the CRYP state to ready */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Sets the payload phase in interrupt mode
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval state
- */
- static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp)
- {
- uint32_t loopcounter;
- uint32_t temp; /* Temporary CrypOutBuff */
- uint32_t lastwordsize;
- uint32_t npblb;
- uint32_t mode;
- uint16_t incount; /* Temporary CrypInCount Value */
- uint16_t outcount; /* Temporary CrypOutCount Value */
-
- /***************************** Payload phase *******************************/
-
- /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
- hcryp->CrypOutCount++;
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
- hcryp->CrypOutCount++;
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp;
- hcryp->CrypOutCount++;
- temp = hcryp->Instance->DOUTR;
- *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp;
- hcryp->CrypOutCount++;
-
- incount = hcryp->CrypInCount;
- outcount = hcryp->CrypOutCount;
- if ((outcount >= (hcryp->Size / 4U)) && ((incount * 4U) >= hcryp->Size))
- {
-
- /* When in CCM with Key and IV configuration skipped, don't disable interruptions */
- if (!((hcryp->Init.Algorithm == CRYP_AES_CCM) && (hcryp->KeyIVConfig == 1U)))
- {
- /* Disable computation complete flag and errors interrupts */
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
- }
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Call output transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Output complete callback*/
- hcryp->OutCpltCallback(hcryp);
- #else
- /*Call legacy weak Output complete callback*/
- HAL_CRYP_OutCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
-
- else if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U)
- {
-
- #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
- /* If suspension flag has been raised, suspend processing
- only if not already at the end of the payload */
- if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
- {
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /* reset SuspendRequest */
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
- /* Disable Computation Complete Flag and Errors Interrupts */
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE|CRYP_IT_ERRIE);
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_SUSPENDED;
- /* Mark that the payload phase is suspended */
- hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
- }
- else
- #endif /* USE_HAL_CRYP_SUSPEND_RESUME */
- {
- /* Write the input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- if ((hcryp->CrypInCount == hcryp->Size) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC))
- {
- /* Call output transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Input complete callback*/
- hcryp->InCpltCallback(hcryp);
- #else
- /*Call legacy weak Input complete callback*/
- HAL_CRYP_InCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
- }
- else /* Last block of payload < 128bit*/
- {
- /* Compute the number of padding bytes in last block of payload */
- npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
-
- mode = hcryp->Instance->CR & AES_CR_MODE;
- if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
- ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
- {
- /* Specify the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
- }
-
- /* Number of valid words (lastwordsize) in last block */
- if ((npblb % 4U) == 0U)
- {
- lastwordsize = (16U - npblb) / 4U;
- }
- else
- {
- lastwordsize = ((16U - npblb) / 4U) + 1U;
- }
-
- /* Last block optionally pad the data with zeros*/
- for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- while (loopcounter < 4U)
- {
- /* pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
- }
- }
-
-
- /**
- * @brief Sets the header phase in polling mode
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module(Header & HeaderSize)
- * @param Timeout Timeout value
- * @retval state
- */
- static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
- {
- uint32_t loopcounter;
-
- /***************************** Header phase for GCM/GMAC or CCM *********************************/
-
- if ((hcryp->Init.HeaderSize != 0U))
- {
- /* Select header phase */
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- if ((hcryp->Init.HeaderSize % 4U) == 0U)
- {
- /* HeaderSize %4, no padding */
- for (loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter += 4U)
- {
- /* Write the input block in the data input register */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
-
- if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
- }
- }
- else
- {
- /*Write header block in the IN FIFO without last block */
- for (loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize) - (hcryp->Init.HeaderSize % 4U))); loopcounter += 4U)
- {
- /* Write the input block in the data input register */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
-
- if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
- }
- /* Last block optionally pad the data with zeros*/
- for (loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize % 4U)); loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- }
- while (loopcounter < 4U)
- {
- /*Pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
-
- if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
- }
- }
- else
- {
- if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
- {
- /*Workaround 1: only AES, before re-enabling the peripheral, datatype can be configured.*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
-
- /* Select header phase */
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
- }
- }
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Sets the header phase when using DMA in process
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module(Header & HeaderSize)
- * @retval None
- */
- static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp)
- {
- __IO uint32_t count = 0U;
- uint32_t loopcounter;
-
- /***************************** Header phase for GCM/GMAC or CCM *********************************/
- if ((hcryp->Init.HeaderSize != 0U))
- {
- /* Select header phase */
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- if ((hcryp->Init.HeaderSize % 4U) == 0U)
- {
- /* HeaderSize %4, no padding */
- for (loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter += 4U)
- {
- /* Write the input block in the data input register */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
-
- /*Wait on CCF flag*/
- count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
- }
- }
- else
- {
- /*Write header block in the IN FIFO without last block */
- for (loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize) - (hcryp->Init.HeaderSize % 4U))); loopcounter += 4U)
- {
- /* Write the Input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
-
- /*Wait on CCF flag*/
- count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
- }
- /* Last block optionally pad the data with zeros*/
- for (loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize % 4U)); loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- }
- while (loopcounter < 4U)
- {
- /* Pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
-
- /*Wait on CCF flag*/
- count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
- do
- {
- count-- ;
- if (count == 0U)
- {
- /* Disable the CRYP peripheral clock */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
-
- /* Clear CCF flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
- }
- }
- else
- {
- /* Select header phase */
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
- }
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Sets the header phase in interrupt mode
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module(Header & HeaderSize)
- * @retval None
- */
- static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp)
- {
- uint32_t loopcounter;
- uint32_t lastwordsize;
- uint32_t npblb;
- uint32_t mode;
-
- /***************************** Header phase *********************************/
- if (hcryp->Init.HeaderSize == hcryp->CrypHeaderCount)
- {
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
- /* Select payload phase */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
-
- if (hcryp->Init.Algorithm == CRYP_AES_CCM)
- {
- /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */
- hcryp->CrypHeaderCount++;
- }
- /* Write the payload Input block in the IN FIFO */
- if (hcryp->Size == 0U)
- {
- /* Disable interrupts */
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- }
- else if (hcryp->Size >= 16U)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
-
- if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
- {
- /* Call the input data transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
- /*Call registered Input complete callback*/
- hcryp->InCpltCallback(hcryp);
- #else
- /*Call legacy weak Input complete callback*/
- HAL_CRYP_InCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
- else /* Size < 4 words : first block is the last block*/
- {
- /* Compute the number of padding bytes in last block of payload */
- npblb = 16U - ((uint32_t)hcryp->Size);
- mode = hcryp->Instance->CR & AES_CR_MODE;
- if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
- ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
- {
- /* Specify the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
- }
-
- /* Number of valid words (lastwordsize) in last block */
- if ((npblb % 4U) == 0U)
- {
- lastwordsize = (16U - npblb) / 4U;
- }
- else
- {
- lastwordsize = ((16U - npblb) / 4U) + 1U;
- }
-
- /* Last block optionally pad the data with zeros*/
- for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
- hcryp->CrypInCount++;
- }
- while (loopcounter < 4U)
- {
- /* Pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
- }
- }
- else if ((((hcryp->Init.HeaderSize) - (hcryp->CrypHeaderCount)) >= 4U))
- {
-
- #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
- /* If suspension flag has been raised, suspend processing
- only if not already at the end of the header */
- if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
- {
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
-
- /* reset SuspendRequest */
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
- /* Disable Computation Complete Flag and Errors Interrupts */
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE|CRYP_IT_ERRIE);
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_SUSPENDED;
- /* Mark that the payload phase is suspended */
- hcryp->Phase = CRYP_PHASE_HEADER_SUSPENDED;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
- }
- else
- #endif /* USE_HAL_CRYP_SUSPEND_RESUME */
- {
- /* Write the input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++;
- }
- }
- else /*HeaderSize < 4 or HeaderSize >4 & HeaderSize %4 != 0*/
- {
- /* Last block optionally pad the data with zeros*/
- for (loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize % 4U); loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- }
- while (loopcounter < 4U)
- {
- /* pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
- }
- }
-
- /**
- * @brief Handle CRYP hardware block Timeout when waiting for CCF flag to be raised.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Timeout Timeout duration.
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
- {
- uint32_t tickstart;
-
- /* Get timeout */
- tickstart = HAL_GetTick();
-
- while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
- {
- /* Check for the Timeout */
- if (Timeout != HAL_MAX_DELAY)
- {
- if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
- {
- return HAL_ERROR;
- }
- }
- }
- return HAL_OK;
- }
-
-
- #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
- /**
- * @brief In case of message processing suspension, read the Initialization Vector.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Output Pointer to the buffer containing the saved Initialization Vector.
- * @note This value has to be stored for reuse by writing the AES_IVRx registers
- * as soon as the suspended processing has to be resumed.
- * @retval None
- */
- static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output)
- {
- uint32_t outputaddr = (uint32_t)Output;
-
- *(uint32_t*)(outputaddr) = hcryp->Instance->IVR3;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->IVR2;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->IVR1;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->IVR0;
- }
-
- /**
- * @brief In case of message processing resumption, rewrite the Initialization
- * Vector in the AES_IVRx registers.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Input Pointer to the buffer containing the saved Initialization Vector to
- * write back in the CRYP hardware block.
- * @note AES must be disabled when reconfiguring the IV values.
- * @retval None
- */
- static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input)
- {
- uint32_t ivaddr = (uint32_t)Input;
-
- hcryp->Instance->IVR3 = *(uint32_t*)(ivaddr);
- ivaddr+=4U;
- hcryp->Instance->IVR2 = *(uint32_t*)(ivaddr);
- ivaddr+=4U;
- hcryp->Instance->IVR1 = *(uint32_t*)(ivaddr);
- ivaddr+=4U;
- hcryp->Instance->IVR0 = *(uint32_t*)(ivaddr);
- }
-
- /**
- * @brief In case of message GCM/GMAC/CCM processing suspension,
- * read the Suspend Registers.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Output Pointer to the buffer containing the saved Suspend Registers.
- * @note These values have to be stored for reuse by writing back the AES_SUSPxR registers
- * as soon as the suspended processing has to be resumed.
- * @retval None
- */
- static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output)
- {
- uint32_t outputaddr = (uint32_t)Output;
- __IO uint32_t count = 0U;
-
- /* In case of GCM payload phase encryption, check that suspension can be carried out */
- if (READ_BIT(hcryp->Instance->CR, (AES_CR_CHMOD|AES_CR_GCMPH|AES_CR_MODE)) == (CRYP_AES_GCM_GMAC|AES_CR_GCMPH_1|0x0))
- {
-
- /* Wait for BUSY flag to be cleared */
- count = 0xFFF;
- do
- {
- count-- ;
- if(count == 0U)
- {
- /* Change state */
- hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process unlocked */
- __HAL_UNLOCK(hcryp);
- HAL_CRYP_ErrorCallback(hcryp);
- return;
- }
- }
- while(HAL_IS_BIT_SET(hcryp->Instance->SR, AES_SR_BUSY));
-
- }
-
-
- *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP7R;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP6R;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP5R;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP4R;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP3R;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP2R;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP1R;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP0R;
- }
-
- /**
- * @brief In case of message GCM/GMAC/CCM processing resumption, rewrite the Suspend
- * Registers in the AES_SUSPxR registers.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Input Pointer to the buffer containing the saved suspend registers to
- * write back in the CRYP hardware block.
- * @note AES must be disabled when reconfiguring the suspend registers.
- * @retval None
- */
- static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input)
- {
- uint32_t ivaddr = (uint32_t)Input;
-
- hcryp->Instance->SUSP7R = *(uint32_t*)(ivaddr);
- ivaddr+=4U;
- hcryp->Instance->SUSP6R = *(uint32_t*)(ivaddr);
- ivaddr+=4U;
- hcryp->Instance->SUSP5R = *(uint32_t*)(ivaddr);
- ivaddr+=4U;
- hcryp->Instance->SUSP4R = *(uint32_t*)(ivaddr);
- ivaddr+=4U;
- hcryp->Instance->SUSP3R = *(uint32_t*)(ivaddr);
- ivaddr+=4U;
- hcryp->Instance->SUSP2R = *(uint32_t*)(ivaddr);
- ivaddr+=4U;
- hcryp->Instance->SUSP1R = *(uint32_t*)(ivaddr);
- ivaddr+=4U;
- hcryp->Instance->SUSP0R = *(uint32_t*)(ivaddr);
- }
-
- /**
- * @brief In case of message GCM/GMAC/CCM processing suspension, read the Key Registers.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Output Pointer to the buffer containing the saved Key Registers.
- * @param KeySize Indicates the key size (128 or 256 bits).
- * @note These values have to be stored for reuse by writing back the AES_KEYRx registers
- * as soon as the suspended processing has to be resumed.
- * @retval None
- */
- static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output, uint32_t KeySize)
- {
- uint32_t keyaddr = (uint32_t)Output;
-
- switch (KeySize)
- {
- case CRYP_KEYSIZE_256B:
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 4U);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 5U);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 6U);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 7U);
- break;
- case CRYP_KEYSIZE_128B:
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U);
- break;
- default:
- break;
- }
- }
-
- /**
- * @brief In case of message GCM/GMAC (CCM/CMAC when applicable) processing resumption, rewrite the Key
- * Registers in the AES_KEYRx registers.
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Input Pointer to the buffer containing the saved key registers to
- * write back in the CRYP hardware block.
- * @param KeySize Indicates the key size (128 or 256 bits)
- * @note AES must be disabled when reconfiguring the Key registers.
- * @retval None
- */
- static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input, uint32_t KeySize)
- {
- uint32_t keyaddr = (uint32_t)Input;
-
- if (KeySize == CRYP_KEYSIZE_256B)
- {
- hcryp->Instance->KEYR7 = *(uint32_t*)(keyaddr);
- keyaddr+=4;
- hcryp->Instance->KEYR6 = *(uint32_t*)(keyaddr);
- keyaddr+=4;
- hcryp->Instance->KEYR5 = *(uint32_t*)(keyaddr);
- keyaddr+=4;
- hcryp->Instance->KEYR4 = *(uint32_t*)(keyaddr);
- keyaddr+=4;
- }
-
- hcryp->Instance->KEYR3 = *(uint32_t*)(keyaddr);
- keyaddr+=4;
- hcryp->Instance->KEYR2 = *(uint32_t*)(keyaddr);
- keyaddr+=4;
- hcryp->Instance->KEYR1 = *(uint32_t*)(keyaddr);
- keyaddr+=4;
- hcryp->Instance->KEYR0 = *(uint32_t*)(keyaddr);
- }
-
- /**
- * @brief Authentication phase resumption in case of GCM/GMAC/CCM process in interrupt mode
- * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module(Header & HeaderSize)
- * @retval None
- */
- static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp)
- {
- uint32_t loopcounter = 0U;
- uint32_t lastwordsize =0;
- uint32_t npblb = 0U ;
-
- /* Case of header phase resumption =================================================*/
- if (hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED)
- {
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- /* Select header phase */
- CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- if (((hcryp->Init.HeaderSize) - (hcryp->CrypHeaderCount) >= 4U))
- {
- /* Write the input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
- hcryp->CrypHeaderCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount );
- hcryp->CrypHeaderCount++;
- }
- else /*HeaderSize < 4 or HeaderSize >4 & HeaderSize %4 != 0*/
- {
- /* Last block optionally pad the data with zeros*/
- for(loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize %4U ); loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount);
- hcryp->CrypHeaderCount++ ;
- }
- while(loopcounter <4U )
- {
- /* pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
- }
- }
- /* Case of payload phase resumption =================================================*/
- else if (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED)
- {
-
- /* Set the phase */
- hcryp->Phase = CRYP_PHASE_PROCESS;
-
- /* Select payload phase once the header phase is performed */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
-
- /* Set to 0 the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
-
- if ((hcryp->Size/4) - (hcryp->CrypInCount) >= 4U)
- {
- /* Write the input block in the IN FIFO */
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
- hcryp->CrypInCount++;
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
- hcryp->CrypInCount++;
- if((hcryp->CrypInCount == hcryp->Size) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC))
- {
- /* Call output transfer complete callback */
- #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
- /*Call registered Input complete callback*/
- hcryp->InCpltCallback(hcryp);
- #else
- /*Call legacy weak Input complete callback*/
- HAL_CRYP_InCpltCallback(hcryp);
- #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
- }
- }
- else /* Last block of payload < 128bit*/
- {
- /* Compute the number of padding bytes in last block of payload */
- npblb = ((hcryp->Size/16U)+1U)*16U- (hcryp->Size);
- if((((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
- (((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
- {
- /* Specify the number of non-valid bytes using NPBLB register*/
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb<< 20U);
- }
-
- /* Number of valid words (lastwordsize) in last block */
- if (npblb % 4U ==0U)
- {
- lastwordsize = (16U-npblb)/4U;
- }
- else
- {
- lastwordsize = (16U-npblb)/4U +1U;
- }
-
- /* Last block optionally pad the data with zeros*/
- for(loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
- {
- hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount );
- hcryp->CrypInCount++;
- }
- while(loopcounter < 4U )
- {
- /* pad the data with zeros to have a complete block */
- hcryp->Instance->DINR = 0x0U;
- loopcounter++;
- }
- }
- }
- }
- #endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */
- /**
- * @}
- */
-
-
- #endif /* HAL_CRYP_MODULE_ENABLED */
-
-
- /**
- * @}
- */
-
- /**
- * @}
- */
- /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|