|
- /**
- ******************************************************************************
- * @file stm32f4xx_hal_cryp_ex.c
- * @author MCD Application Team
- * @version V1.7.1
- * @date 14-April-2017
- * @brief Extended CRYP HAL module driver
- * This file provides firmware functions to manage the following
- * functionalities of CRYP extension peripheral:
- * + Extended AES processing functions
- *
- @verbatim
- ==============================================================================
- ##### How to use this driver #####
- ==============================================================================
- [..]
- The CRYP Extension HAL driver can be used as follows:
- (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
- (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()
- (##) In case of using interrupts (e.g. HAL_CRYPEx_AESGCM_Encrypt_IT())
- (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
- (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
- (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
- (##) In case of using DMA to control data transfer (e.g. HAL_AES_ECB_Encrypt_DMA())
- (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE()
- (+++) Configure and enable two DMA streams one for managing data transfer from
- memory to peripheral (input stream) and another stream for managing data
- transfer from peripheral to memory (output stream)
- (+++) Associate the initialized DMA handle to the CRYP DMA handle
- using __HAL_LINKDMA()
- (+++) Configure the priority and enable the NVIC for the transfer complete
- interrupt on the two DMA Streams. The output stream should have higher
- priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
- (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly:
- (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit
- (##) The key size: 128, 192 and 256. This parameter is relevant only for AES
- (##) The encryption/decryption key. Its size depends on the algorithm
- used for encryption/decryption
- (##) The initialization vector (counter). It is not used ECB mode.
- (#)Three processing (encryption/decryption) functions are available:
- (##) Polling mode: encryption and decryption APIs are blocking functions
- i.e. they process the data and wait till the processing is finished
- e.g. HAL_CRYPEx_AESGCM_Encrypt()
- (##) Interrupt mode: encryption and decryption APIs are not blocking functions
- i.e. they process the data under interrupt
- e.g. HAL_CRYPEx_AESGCM_Encrypt_IT()
- (##) DMA mode: encryption and decryption APIs are not blocking functions
- i.e. the data transfer is ensured by DMA
- e.g. HAL_CRYPEx_AESGCM_Encrypt_DMA()
- (#)When the processing function is called at first time after HAL_CRYP_Init()
- the CRYP peripheral is initialized and processes the buffer in input.
- At second call, the processing function performs an append of the already
- processed buffer.
- When a new data block is to be processed, call HAL_CRYP_Init() then the
- processing function.
- (#)In AES-GCM and AES-CCM modes are an authenticated encryption algorithms
- which provide authentication messages.
- HAL_AES_GCM_Finish() and HAL_AES_CCM_Finish() are used to provide those
- authentication messages.
- Call those functions after the processing ones (polling, interrupt or DMA).
- e.g. in AES-CCM mode call HAL_CRYPEx_AESCCM_Encrypt() to encrypt the plain data
- then call HAL_CRYPEx_AESCCM_Finish() to get the authentication message
- -@- For CCM Encrypt/Decrypt API's, only DataType = 8-bit is supported by this version.
- -@- The HAL_CRYPEx_AESGCM_xxxx() implementation is limited to 32bits inputs data length
- (Plain/Cyphertext, Header) compared with GCM standards specifications (800-38D).
- (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
- /* Includes ------------------------------------------------------------------*/
- #include "stm32f4xx_hal.h"
-
- /** @addtogroup STM32F4xx_HAL_Driver
- * @{
- */
-
- /** @defgroup CRYPEx CRYPEx
- * @brief CRYP Extension HAL module driver.
- * @{
- */
-
- #ifdef HAL_CRYP_MODULE_ENABLED
-
- #if defined(CRYP)
-
- /* Private typedef -----------------------------------------------------------*/
- /* Private define ------------------------------------------------------------*/
- /** @addtogroup CRYPEx_Private_define
- * @{
- */
- #define CRYPEx_TIMEOUT_VALUE 1U
- /**
- * @}
- */
-
- /* Private macro -------------------------------------------------------------*/
- /* Private variables ---------------------------------------------------------*/
- /* Private function prototypes -----------------------------------------------*/
- /** @defgroup CRYPEx_Private_Functions_prototypes CRYP Private Functions Prototypes
- * @{
- */
- static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector);
- static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize);
- static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout);
- static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout);
- static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma);
- static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma);
- static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma);
- static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
- /**
- * @}
- */
-
- /* Private functions ---------------------------------------------------------*/
- /** @addtogroup CRYPEx_Private_Functions
- * @{
- */
-
- /**
- * @brief DMA CRYP Input Data process complete callback.
- * @param hdma: DMA handle
- * @retval None
- */
- static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma)
- {
- CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
-
- /* Disable the DMA transfer for input Fifo request by resetting the DIEN bit
- in the DMACR register */
- hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN);
-
- /* Call input data transfer complete callback */
- HAL_CRYP_InCpltCallback(hcryp);
- }
-
- /**
- * @brief DMA CRYP Output Data process complete callback.
- * @param hdma: DMA handle
- * @retval None
- */
- static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma)
- {
- CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
-
- /* Disable the DMA transfer for output Fifo request by resetting the DOEN bit
- in the DMACR register */
- hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Call output data transfer complete callback */
- HAL_CRYP_OutCpltCallback(hcryp);
- }
-
- /**
- * @brief DMA CRYP communication error callback.
- * @param hdma: DMA handle
- * @retval None
- */
- static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma)
- {
- CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
- hcryp->State= HAL_CRYP_STATE_READY;
- HAL_CRYP_ErrorCallback(hcryp);
- }
-
- /**
- * @brief Writes the Key in Key registers.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Key: Pointer to Key buffer
- * @param KeySize: Size of Key
- * @retval None
- */
- static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize)
- {
- uint32_t keyaddr = (uint32_t)Key;
-
- switch(KeySize)
- {
- case CRYP_KEYSIZE_256B:
- /* Key Initialisation */
- hcryp->Instance->K0LR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K0RR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
- break;
- case CRYP_KEYSIZE_192B:
- hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
- break;
- case CRYP_KEYSIZE_128B:
- hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
- break;
- default:
- break;
- }
- }
-
- /**
- * @brief Writes the InitVector/InitCounter in IV registers.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param InitVector: Pointer to InitVector/InitCounter buffer
- * @retval None
- */
- static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector)
- {
- uint32_t ivaddr = (uint32_t)InitVector;
-
- hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->IV1LR = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->IV1RR = __REV(*(uint32_t*)(ivaddr));
- }
-
- /**
- * @brief Process Data: Writes Input data in polling mode and read the Output data.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Input: Pointer to the Input buffer.
- * @param Ilength: Length of the Input buffer, must be a multiple of 16
- * @param Output: Pointer to the returned buffer
- * @param Timeout: Timeout value
- * @retval None
- */
- static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout)
- {
- uint32_t tickstart = 0U;
- uint32_t i = 0U;
- uint32_t inputaddr = (uint32_t)Input;
- uint32_t outputaddr = (uint32_t)Output;
-
- for(i=0U; (i < Ilength); i+=16U)
- {
- /* Write the Input block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- /* Read the Output block from the OUT FIFO */
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- }
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Sets the header phase
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Input: Pointer to the Input buffer.
- * @param Ilength: Length of the Input buffer, must be a multiple of 16
- * @param Timeout: Timeout value
- * @retval None
- */
- static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout)
- {
- uint32_t tickstart = 0U;
- uint32_t loopcounter = 0U;
- uint32_t headeraddr = (uint32_t)Input;
-
- /* Prevent unused argument(s) compilation warning */
- UNUSED(Ilength);
-
- /***************************** Header phase *********************************/
- if(hcryp->Init.HeaderSize != 0U)
- {
- /* Select header phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- for(loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=16U)
- {
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- /* Write the Input block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- }
-
- /* Wait until the complete message has been processed */
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- }
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Sets the DMA configuration and start the DMA transfer.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param inputaddr: Address of the Input buffer
- * @param Size: Size of the Input buffer, must be a multiple of 16
- * @param outputaddr: Address of the Output buffer
- * @retval None
- */
- static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
- {
- /* Set the CRYP DMA transfer complete callback */
- hcryp->hdmain->XferCpltCallback = CRYPEx_GCMCCM_DMAInCplt;
- /* Set the DMA error callback */
- hcryp->hdmain->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
-
- /* Set the CRYP DMA transfer complete callback */
- hcryp->hdmaout->XferCpltCallback = CRYPEx_GCMCCM_DMAOutCplt;
- /* Set the DMA error callback */
- hcryp->hdmaout->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Enable the DMA In DMA Stream */
- HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DR, Size/4U);
-
- /* Enable In DMA request */
- hcryp->Instance->DMACR = CRYP_DMACR_DIEN;
-
- /* Enable the DMA Out DMA Stream */
- HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size/4U);
-
- /* Enable Out DMA request */
- hcryp->Instance->DMACR |= CRYP_DMACR_DOEN;
- }
-
- /**
- * @}
- */
-
- /* Exported functions---------------------------------------------------------*/
- /** @addtogroup CRYPEx_Exported_Functions
- * @{
- */
-
- /** @defgroup CRYPEx_Exported_Functions_Group1 Extended AES processing functions
- * @brief Extended processing functions.
- *
- @verbatim
- ==============================================================================
- ##### Extended AES processing functions #####
- ==============================================================================
- [..] This section provides functions allowing to:
- (+) Encrypt plaintext using AES-128/192/256 using GCM and CCM chaining modes
- (+) Decrypt cyphertext using AES-128/192/256 using GCM and CCM chaining modes
- (+) Finish the processing. This function is available only for GCM and CCM
- [..] Three processing methods are available:
- (+) Polling mode
- (+) Interrupt mode
- (+) DMA mode
-
- @endverbatim
- * @{
- */
-
-
- /**
- * @brief Initializes the CRYP peripheral in AES CCM encryption mode then
- * encrypt pPlainData. The cypher data are available in pCypherData.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pPlainData: Pointer to the plaintext buffer
- * @param Size: Length of the plaintext buffer, must be a multiple of 16
- * @param pCypherData: Pointer to the cyphertext buffer
- * @param Timeout: Timeout duration
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
- {
- uint32_t tickstart = 0U;
- uint32_t headersize = hcryp->Init.HeaderSize;
- uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
- uint32_t loopcounter = 0U;
- uint32_t bufferidx = 0U;
- uint8_t blockb0[16U] = {0};/* Block B0 */
- uint8_t ctr[16U] = {0}; /* Counter */
- uint32_t b0addr = (uint32_t)blockb0;
-
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /************************ Formatting the header block *********************/
- if(headersize != 0U)
- {
- /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
- if(headersize < 65280U)
- {
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
- headersize += 2U;
- }
- else
- {
- /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
- hcryp->Init.pScratch[bufferidx++] = 0xFFU;
- hcryp->Init.pScratch[bufferidx++] = 0xFEU;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
- headersize += 6U;
- }
- /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
- for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
- {
- hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
- }
- /* Check if the header size is modulo 16 */
- if ((headersize % 16U) != 0U)
- {
- /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
- for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = 0U;
- }
- /* Set the header size to modulo 16 */
- headersize = ((headersize/16U) + 1U) * 16U;
- }
- /* Set the pointer headeraddr to hcryp->Init.pScratch */
- headeraddr = (uint32_t)hcryp->Init.pScratch;
- }
- /*********************** Formatting the block B0 **************************/
- if(headersize != 0U)
- {
- blockb0[0U] = 0x40U;
- }
- /* Flags byte */
- /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1U) & (uint8_t)0x07) << 3U);
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
-
- for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
- {
- blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
- }
- for ( ; loopcounter < 13U; loopcounter++)
- {
- blockb0[loopcounter+1U] = 0U;
- }
-
- blockb0[14U] = (Size >> 8U);
- blockb0[15U] = (Size & 0xFFU);
-
- /************************* Formatting the initial counter *****************/
- /* Byte 0:
- Bits 7 and 6 are reserved and shall be set to 0
- Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter blocks
- are distinct from B0
- Bits 0, 1, and 2 contain the same encoding of q as in B0
- */
- ctr[0U] = blockb0[0U] & 0x07U;
- /* byte 1 to NonceSize is the IV (Nonce) */
- for(loopcounter = 1U; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
- {
- ctr[loopcounter] = blockb0[loopcounter];
- }
- /* Set the LSB to 1 */
- ctr[15U] |= 0x01U;
-
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES CCM mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
-
- /* Select init phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- b0addr = (uint32_t)blockb0;
- /* Write the blockb0 block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- /***************************** Header phase *******************************/
- if(headersize != 0U)
- {
- /* Select header phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
- {
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
- {
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- }
- /* Write the header block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- }
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- }
- /* Save formatted counter into the scratch buffer pScratch */
- for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
- }
- /* Reset bit 0 */
- hcryp->Init.pScratch[15U] &= 0xFEU;
-
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
-
- /* Write Plain Data and Get Cypher Data */
- if(CRYPEx_GCMCCM_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Initializes the CRYP peripheral in AES GCM encryption mode then
- * encrypt pPlainData. The cypher data are available in pCypherData.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pPlainData: Pointer to the plaintext buffer
- * @param Size: Length of the plaintext buffer, must be a multiple of 16
- * @param pCypherData: Pointer to the cyphertext buffer
- * @param Timeout: Timeout duration
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
- {
- uint32_t tickstart = 0U;
-
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES GCM mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
-
- /* Set the header phase */
- if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
-
- /* Disable the CRYP peripheral */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
-
- /* Write Plain Data and Get Cypher Data */
- if(CRYPEx_GCMCCM_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Initializes the CRYP peripheral in AES GCM decryption mode then
- * decrypted pCypherData. The cypher data are available in pPlainData.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pCypherData: Pointer to the cyphertext buffer
- * @param Size: Length of the cyphertext buffer, must be a multiple of 16
- * @param pPlainData: Pointer to the plaintext buffer
- * @param Timeout: Timeout duration
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
- {
- uint32_t tickstart = 0U;
-
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES GCM decryption mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
-
- /* Set the header phase */
- if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- /* Disable the CRYP peripheral */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
-
- /* Write Plain Data and Get Cypher Data */
- if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Computes the authentication TAG.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param Size: Total length of the plain/cyphertext buffer
- * @param AuthTag: Pointer to the authentication buffer
- * @param Timeout: Timeout duration
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Finish(CRYP_HandleTypeDef *hcryp, uint32_t Size, uint8_t *AuthTag, uint32_t Timeout)
- {
- uint32_t tickstart = 0U;
- uint64_t headerlength = hcryp->Init.HeaderSize * 8U; /* Header length in bits */
- uint64_t inputlength = Size * 8U; /* input length in bits */
- uint32_t tagaddr = (uint32_t)AuthTag;
-
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
- {
- /* Change the CRYP phase */
- hcryp->Phase = HAL_CRYP_PHASE_FINAL;
-
- /* Disable CRYP to start the final phase */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Select final phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Write the number of bits in header (64 bits) followed by the number of bits
- in the payload */
- if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
- {
- hcryp->Instance->DR = __RBIT(headerlength >> 32U);
- hcryp->Instance->DR = __RBIT(headerlength);
- hcryp->Instance->DR = __RBIT(inputlength >> 32U);
- hcryp->Instance->DR = __RBIT(inputlength);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
- {
- hcryp->Instance->DR = __REV(headerlength >> 32U);
- hcryp->Instance->DR = __REV(headerlength);
- hcryp->Instance->DR = __REV(inputlength >> 32U);
- hcryp->Instance->DR = __REV(inputlength);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
- {
- hcryp->Instance->DR = __ROR((uint32_t)(headerlength >> 32U), 16U);
- hcryp->Instance->DR = __ROR((uint32_t)headerlength, 16U);
- hcryp->Instance->DR = __ROR((uint32_t)(inputlength >> 32U), 16U);
- hcryp->Instance->DR = __ROR((uint32_t)inputlength, 16U);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
- {
- hcryp->Instance->DR = (uint32_t)(headerlength >> 32U);
- hcryp->Instance->DR = (uint32_t)(headerlength);
- hcryp->Instance->DR = (uint32_t)(inputlength >> 32U);
- hcryp->Instance->DR = (uint32_t)(inputlength);
- }
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
-
- /* Read the Auth TAG in the IN FIFO */
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
- tagaddr+=4U;
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
- tagaddr+=4U;
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
- tagaddr+=4U;
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
- }
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Computes the authentication TAG for AES CCM mode.
- * @note This API is called after HAL_AES_CCM_Encrypt()/HAL_AES_CCM_Decrypt()
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param AuthTag: Pointer to the authentication buffer
- * @param Timeout: Timeout duration
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Finish(CRYP_HandleTypeDef *hcryp, uint8_t *AuthTag, uint32_t Timeout)
- {
- uint32_t tickstart = 0U;
- uint32_t tagaddr = (uint32_t)AuthTag;
- uint32_t ctraddr = (uint32_t)hcryp->Init.pScratch;
- uint32_t temptag[4U] = {0U}; /* Temporary TAG (MAC) */
- uint32_t loopcounter;
-
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
- {
- /* Change the CRYP phase */
- hcryp->Phase = HAL_CRYP_PHASE_FINAL;
-
- /* Disable CRYP to start the final phase */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Select final phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Write the counter block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)ctraddr;
- ctraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)ctraddr;
- ctraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)ctraddr;
- ctraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)ctraddr;
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
-
- /* Read the Auth TAG in the IN FIFO */
- temptag[0U] = hcryp->Instance->DOUT;
- temptag[1U] = hcryp->Instance->DOUT;
- temptag[2U] = hcryp->Instance->DOUT;
- temptag[3U] = hcryp->Instance->DOUT;
- }
-
- /* Copy temporary authentication TAG in user TAG buffer */
- for(loopcounter = 0U; loopcounter < hcryp->Init.TagSize ; loopcounter++)
- {
- /* Set the authentication TAG buffer */
- *((uint8_t*)tagaddr+loopcounter) = *((uint8_t*)temptag+loopcounter);
- }
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Initializes the CRYP peripheral in AES CCM decryption mode then
- * decrypted pCypherData. The cypher data are available in pPlainData.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pPlainData: Pointer to the plaintext buffer
- * @param Size: Length of the plaintext buffer, must be a multiple of 16
- * @param pCypherData: Pointer to the cyphertext buffer
- * @param Timeout: Timeout duration
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
- {
- uint32_t tickstart = 0U;
- uint32_t headersize = hcryp->Init.HeaderSize;
- uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
- uint32_t loopcounter = 0U;
- uint32_t bufferidx = 0U;
- uint8_t blockb0[16U] = {0};/* Block B0 */
- uint8_t ctr[16U] = {0}; /* Counter */
- uint32_t b0addr = (uint32_t)blockb0;
-
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /************************ Formatting the header block *********************/
- if(headersize != 0U)
- {
- /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
- if(headersize < 65280U)
- {
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
- headersize += 2U;
- }
- else
- {
- /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
- hcryp->Init.pScratch[bufferidx++] = 0xFFU;
- hcryp->Init.pScratch[bufferidx++] = 0xFEU;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
- headersize += 6U;
- }
- /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
- for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
- {
- hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
- }
- /* Check if the header size is modulo 16 */
- if ((headersize % 16U) != 0U)
- {
- /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
- for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = 0U;
- }
- /* Set the header size to modulo 16 */
- headersize = ((headersize/16U) + 1U) * 16U;
- }
- /* Set the pointer headeraddr to hcryp->Init.pScratch */
- headeraddr = (uint32_t)hcryp->Init.pScratch;
- }
- /*********************** Formatting the block B0 **************************/
- if(headersize != 0U)
- {
- blockb0[0U] = 0x40U;
- }
- /* Flags byte */
- /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2U))) >> 1U) & (uint8_t)0x07U) << 3U);
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15U) - hcryp->Init.IVSize) - (uint8_t)1U) & (uint8_t)0x07U);
-
- for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
- {
- blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
- }
- for ( ; loopcounter < 13U; loopcounter++)
- {
- blockb0[loopcounter+1U] = 0U;
- }
-
- blockb0[14U] = (Size >> 8U);
- blockb0[15U] = (Size & 0xFFU);
-
- /************************* Formatting the initial counter *****************/
- /* Byte 0:
- Bits 7 and 6 are reserved and shall be set to 0
- Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
- blocks are distinct from B0
- Bits 0, 1, and 2 contain the same encoding of q as in B0
- */
- ctr[0U] = blockb0[0U] & 0x07U;
- /* byte 1 to NonceSize is the IV (Nonce) */
- for(loopcounter = 1U; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
- {
- ctr[loopcounter] = blockb0[loopcounter];
- }
- /* Set the LSB to 1 */
- ctr[15U] |= 0x01U;
-
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES CCM mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
-
- /* Select init phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- b0addr = (uint32_t)blockb0;
- /* Write the blockb0 block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- /***************************** Header phase *******************************/
- if(headersize != 0U)
- {
- /* Select header phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable Crypto processor */
- __HAL_CRYP_ENABLE(hcryp);
-
- for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
- {
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- /* Write the header block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- }
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- }
- /* Save formatted counter into the scratch buffer pScratch */
- for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
- }
- /* Reset bit 0 */
- hcryp->Init.pScratch[15U] &= 0xFEU;
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
-
- /* Write Plain Data and Get Cypher Data */
- if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Initializes the CRYP peripheral in AES GCM encryption mode using IT.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pPlainData: Pointer to the plaintext buffer
- * @param Size: Length of the plaintext buffer, must be a multiple of 16
- * @param pCypherData: Pointer to the cyphertext buffer
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
- {
- uint32_t tickstart = 0U;
- uint32_t inputaddr;
- uint32_t outputaddr;
-
- if(hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Get the buffer addresses and sizes */
- hcryp->CrypInCount = Size;
- hcryp->pCrypInBuffPtr = pPlainData;
- hcryp->pCrypOutBuffPtr = pCypherData;
- hcryp->CrypOutCount = Size;
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES GCM mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Enable CRYP to start the init phase */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
-
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
-
- }
- }
-
- /* Set the header phase */
- if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1U) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- /* Disable the CRYP peripheral */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
-
- if(Size != 0U)
- {
- /* Enable Interrupts */
- __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
- }
- else
- {
- /* Process Locked */
- __HAL_UNLOCK(hcryp);
- /* Change the CRYP state and phase */
- hcryp->State = HAL_CRYP_STATE_READY;
- }
- /* Return function status */
- return HAL_OK;
- }
- else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
- {
- inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
- /* Write the Input block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- hcryp->pCrypInBuffPtr += 16U;
- hcryp->CrypInCount -= 16U;
- if(hcryp->CrypInCount == 0U)
- {
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
- /* Call the Input data transfer complete callback */
- HAL_CRYP_InCpltCallback(hcryp);
- }
- }
- else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
- {
- outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
- /* Read the Output block from the Output FIFO */
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- hcryp->pCrypOutBuffPtr += 16U;
- hcryp->CrypOutCount -= 16U;
- if(hcryp->CrypOutCount == 0U)
- {
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Call Input transfer complete callback */
- HAL_CRYP_OutCpltCallback(hcryp);
- }
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pPlainData: Pointer to the plaintext buffer
- * @param Size: Length of the plaintext buffer, must be a multiple of 16
- * @param pCypherData: Pointer to the cyphertext buffer
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
- {
- uint32_t tickstart = 0U;
- uint32_t inputaddr;
- uint32_t outputaddr;
-
- uint32_t headersize = hcryp->Init.HeaderSize;
- uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
- uint32_t loopcounter = 0U;
- uint32_t bufferidx = 0U;
- uint8_t blockb0[16U] = {0};/* Block B0 */
- uint8_t ctr[16U] = {0}; /* Counter */
- uint32_t b0addr = (uint32_t)blockb0;
-
- if(hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- hcryp->CrypInCount = Size;
- hcryp->pCrypInBuffPtr = pPlainData;
- hcryp->pCrypOutBuffPtr = pCypherData;
- hcryp->CrypOutCount = Size;
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /************************ Formatting the header block *******************/
- if(headersize != 0U)
- {
- /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
- if(headersize < 65280U)
- {
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
- headersize += 2U;
- }
- else
- {
- /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
- hcryp->Init.pScratch[bufferidx++] = 0xFFU;
- hcryp->Init.pScratch[bufferidx++] = 0xFEU;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
- headersize += 6U;
- }
- /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
- for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
- {
- hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
- }
- /* Check if the header size is modulo 16 */
- if ((headersize % 16U) != 0U)
- {
- /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
- for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = 0U;
- }
- /* Set the header size to modulo 16 */
- headersize = ((headersize/16U) + 1U) * 16U;
- }
- /* Set the pointer headeraddr to hcryp->Init.pScratch */
- headeraddr = (uint32_t)hcryp->Init.pScratch;
- }
- /*********************** Formatting the block B0 ************************/
- if(headersize != 0U)
- {
- blockb0[0U] = 0x40U;
- }
- /* Flags byte */
- /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1U) & (uint8_t)0x07) << 3U);
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
-
- for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
- {
- blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
- }
- for ( ; loopcounter < 13U; loopcounter++)
- {
- blockb0[loopcounter+1U] = 0U;
- }
-
- blockb0[14U] = (Size >> 8U);
- blockb0[15U] = (Size & 0xFFU);
-
- /************************* Formatting the initial counter ***************/
- /* Byte 0:
- Bits 7 and 6 are reserved and shall be set to 0
- Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
- blocks are distinct from B0
- Bits 0, 1, and 2 contain the same encoding of q as in B0
- */
- ctr[0U] = blockb0[0U] & 0x07U;
- /* byte 1 to NonceSize is the IV (Nonce) */
- for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
- {
- ctr[loopcounter] = blockb0[loopcounter];
- }
- /* Set the LSB to 1 */
- ctr[15U] |= 0x01U;
-
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES CCM mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
-
- /* Select init phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- b0addr = (uint32_t)blockb0;
- /* Write the blockb0 block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- /***************************** Header phase *****************************/
- if(headersize != 0U)
- {
- /* Select header phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable Crypto processor */
- __HAL_CRYP_ENABLE(hcryp);
-
- for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
- {
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- /* Write the header block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- }
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- /* Save formatted counter into the scratch buffer pScratch */
- for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
- }
- /* Reset bit 0 */
- hcryp->Init.pScratch[15U] &= 0xFEU;
-
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
-
- if(Size != 0U)
- {
- /* Enable Interrupts */
- __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
- }
- else
- {
- /* Change the CRYP state and phase */
- hcryp->State = HAL_CRYP_STATE_READY;
- }
-
- /* Return function status */
- return HAL_OK;
- }
- else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
- {
- inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
- /* Write the Input block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- hcryp->pCrypInBuffPtr += 16U;
- hcryp->CrypInCount -= 16U;
- if(hcryp->CrypInCount == 0U)
- {
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
- /* Call Input transfer complete callback */
- HAL_CRYP_InCpltCallback(hcryp);
- }
- }
- else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
- {
- outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
- /* Read the Output block from the Output FIFO */
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- hcryp->pCrypOutBuffPtr += 16U;
- hcryp->CrypOutCount -= 16U;
- if(hcryp->CrypOutCount == 0U)
- {
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Call Input transfer complete callback */
- HAL_CRYP_OutCpltCallback(hcryp);
- }
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Initializes the CRYP peripheral in AES GCM decryption mode using IT.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pCypherData: Pointer to the cyphertext buffer
- * @param Size: Length of the cyphertext buffer, must be a multiple of 16
- * @param pPlainData: Pointer to the plaintext buffer
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
- {
- uint32_t tickstart = 0U;
- uint32_t inputaddr;
- uint32_t outputaddr;
-
- if(hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Get the buffer addresses and sizes */
- hcryp->CrypInCount = Size;
- hcryp->pCrypInBuffPtr = pCypherData;
- hcryp->pCrypOutBuffPtr = pPlainData;
- hcryp->CrypOutCount = Size;
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES GCM decryption mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Enable CRYP to start the init phase */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
-
- /* Set the header phase */
- if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1U) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- /* Disable the CRYP peripheral */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
-
- if(Size != 0U)
- {
- /* Enable Interrupts */
- __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
- }
- else
- {
- /* Process Locked */
- __HAL_UNLOCK(hcryp);
- /* Change the CRYP state and phase */
- hcryp->State = HAL_CRYP_STATE_READY;
- }
-
- /* Return function status */
- return HAL_OK;
- }
- else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
- {
- inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
- /* Write the Input block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- hcryp->pCrypInBuffPtr += 16U;
- hcryp->CrypInCount -= 16U;
- if(hcryp->CrypInCount == 0U)
- {
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
- /* Call the Input data transfer complete callback */
- HAL_CRYP_InCpltCallback(hcryp);
- }
- }
- else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
- {
- outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
- /* Read the Output block from the Output FIFO */
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- hcryp->pCrypOutBuffPtr += 16U;
- hcryp->CrypOutCount -= 16U;
- if(hcryp->CrypOutCount == 0U)
- {
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Call Input transfer complete callback */
- HAL_CRYP_OutCpltCallback(hcryp);
- }
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Initializes the CRYP peripheral in AES CCM decryption mode using interrupt
- * then decrypted pCypherData. The cypher data are available in pPlainData.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pCypherData: Pointer to the cyphertext buffer
- * @param Size: Length of the plaintext buffer, must be a multiple of 16
- * @param pPlainData: Pointer to the plaintext buffer
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
- {
- uint32_t inputaddr;
- uint32_t outputaddr;
- uint32_t tickstart = 0U;
- uint32_t headersize = hcryp->Init.HeaderSize;
- uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
- uint32_t loopcounter = 0U;
- uint32_t bufferidx = 0U;
- uint8_t blockb0[16U] = {0};/* Block B0 */
- uint8_t ctr[16U] = {0}; /* Counter */
- uint32_t b0addr = (uint32_t)blockb0;
-
- if(hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- hcryp->CrypInCount = Size;
- hcryp->pCrypInBuffPtr = pCypherData;
- hcryp->pCrypOutBuffPtr = pPlainData;
- hcryp->CrypOutCount = Size;
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /************************ Formatting the header block *******************/
- if(headersize != 0U)
- {
- /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
- if(headersize < 65280U)
- {
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
- headersize += 2U;
- }
- else
- {
- /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
- hcryp->Init.pScratch[bufferidx++] = 0xFFU;
- hcryp->Init.pScratch[bufferidx++] = 0xFEU;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
- headersize += 6U;
- }
- /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
- for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
- {
- hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
- }
- /* Check if the header size is modulo 16 */
- if ((headersize % 16U) != 0U)
- {
- /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
- for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = 0U;
- }
- /* Set the header size to modulo 16 */
- headersize = ((headersize/16U) + 1U) * 16U;
- }
- /* Set the pointer headeraddr to hcryp->Init.pScratch */
- headeraddr = (uint32_t)hcryp->Init.pScratch;
- }
- /*********************** Formatting the block B0 ************************/
- if(headersize != 0U)
- {
- blockb0[0U] = 0x40U;
- }
- /* Flags byte */
- /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1U) & (uint8_t)0x07) << 3U);
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
-
- for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
- {
- blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
- }
- for ( ; loopcounter < 13U; loopcounter++)
- {
- blockb0[loopcounter+1U] = 0U;
- }
-
- blockb0[14U] = (Size >> 8U);
- blockb0[15U] = (Size & 0xFFU);
-
- /************************* Formatting the initial counter ***************/
- /* Byte 0:
- Bits 7 and 6 are reserved and shall be set to 0
- Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
- blocks are distinct from B0
- Bits 0, 1, and 2 contain the same encoding of q as in B0
- */
- ctr[0U] = blockb0[0U] & 0x07U;
- /* byte 1 to NonceSize is the IV (Nonce) */
- for(loopcounter = 1U; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
- {
- ctr[loopcounter] = blockb0[loopcounter];
- }
- /* Set the LSB to 1 */
- ctr[15U] |= 0x01U;
-
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES CCM mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
-
- /* Select init phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- b0addr = (uint32_t)blockb0;
- /* Write the blockb0 block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- /***************************** Header phase *****************************/
- if(headersize != 0U)
- {
- /* Select header phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable Crypto processor */
- __HAL_CRYP_ENABLE(hcryp);
-
- for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
- {
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- /* Write the header block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- }
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- /* Save formatted counter into the scratch buffer pScratch */
- for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
- }
- /* Reset bit 0 */
- hcryp->Init.pScratch[15U] &= 0xFEU;
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
-
- /* Enable Interrupts */
- __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
- else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
- {
- inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
- /* Write the Input block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(inputaddr);
- hcryp->pCrypInBuffPtr += 16U;
- hcryp->CrypInCount -= 16U;
- if(hcryp->CrypInCount == 0U)
- {
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
- /* Call the Input data transfer complete callback */
- HAL_CRYP_InCpltCallback(hcryp);
- }
- }
- else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
- {
- outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
- /* Read the Output block from the Output FIFO */
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
- hcryp->pCrypOutBuffPtr += 16U;
- hcryp->CrypOutCount -= 16U;
- if(hcryp->CrypOutCount == 0U)
- {
- __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Call Input transfer complete callback */
- HAL_CRYP_OutCpltCallback(hcryp);
- }
- }
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Initializes the CRYP peripheral in AES GCM encryption mode using DMA.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pPlainData: Pointer to the plaintext buffer
- * @param Size: Length of the plaintext buffer, must be a multiple of 16
- * @param pCypherData: Pointer to the cyphertext buffer
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
- {
- uint32_t tickstart = 0U;
- uint32_t inputaddr;
- uint32_t outputaddr;
-
- if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
- {
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- inputaddr = (uint32_t)pPlainData;
- outputaddr = (uint32_t)pCypherData;
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES GCM mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Enable CRYP to start the init phase */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Set the header phase */
- if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1U) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- /* Disable the CRYP peripheral */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
-
- /* Set the input and output addresses and start DMA transfer */
- CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
-
- /* Unlock process */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
- else
- {
- return HAL_ERROR;
- }
- }
-
- /**
- * @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pPlainData: Pointer to the plaintext buffer
- * @param Size: Length of the plaintext buffer, must be a multiple of 16
- * @param pCypherData: Pointer to the cyphertext buffer
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
- {
- uint32_t tickstart = 0U;
- uint32_t inputaddr;
- uint32_t outputaddr;
- uint32_t headersize;
- uint32_t headeraddr;
- uint32_t loopcounter = 0U;
- uint32_t bufferidx = 0U;
- uint8_t blockb0[16U] = {0};/* Block B0 */
- uint8_t ctr[16U] = {0}; /* Counter */
- uint32_t b0addr = (uint32_t)blockb0;
-
- if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
- {
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- inputaddr = (uint32_t)pPlainData;
- outputaddr = (uint32_t)pCypherData;
-
- headersize = hcryp->Init.HeaderSize;
- headeraddr = (uint32_t)hcryp->Init.Header;
-
- hcryp->CrypInCount = Size;
- hcryp->pCrypInBuffPtr = pPlainData;
- hcryp->pCrypOutBuffPtr = pCypherData;
- hcryp->CrypOutCount = Size;
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /************************ Formatting the header block *******************/
- if(headersize != 0U)
- {
- /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
- if(headersize < 65280U)
- {
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
- headersize += 2U;
- }
- else
- {
- /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
- hcryp->Init.pScratch[bufferidx++] = 0xFFU;
- hcryp->Init.pScratch[bufferidx++] = 0xFEU;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
- headersize += 6U;
- }
- /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
- for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
- {
- hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
- }
- /* Check if the header size is modulo 16 */
- if ((headersize % 16U) != 0U)
- {
- /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
- for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = 0U;
- }
- /* Set the header size to modulo 16 */
- headersize = ((headersize/16U) + 1U) * 16U;
- }
- /* Set the pointer headeraddr to hcryp->Init.pScratch */
- headeraddr = (uint32_t)hcryp->Init.pScratch;
- }
- /*********************** Formatting the block B0 ************************/
- if(headersize != 0U)
- {
- blockb0[0U] = 0x40U;
- }
- /* Flags byte */
- /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07) << 3);
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
-
- for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
- {
- blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
- }
- for ( ; loopcounter < 13U; loopcounter++)
- {
- blockb0[loopcounter+1U] = 0U;
- }
-
- blockb0[14U] = (Size >> 8U);
- blockb0[15U] = (Size & 0xFFU);
-
- /************************* Formatting the initial counter ***************/
- /* Byte 0:
- Bits 7 and 6 are reserved and shall be set to 0
- Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
- blocks are distinct from B0
- Bits 0, 1, and 2 contain the same encoding of q as in B0
- */
- ctr[0U] = blockb0[0U] & 0x07U;
- /* byte 1 to NonceSize is the IV (Nonce) */
- for(loopcounter = 1U; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
- {
- ctr[loopcounter] = blockb0[loopcounter];
- }
- /* Set the LSB to 1 */
- ctr[15U] |= 0x01U;
-
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES CCM mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
-
- /* Select init phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- b0addr = (uint32_t)blockb0;
- /* Write the blockb0 block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- /***************************** Header phase *****************************/
- if(headersize != 0U)
- {
- /* Select header phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable Crypto processor */
- __HAL_CRYP_ENABLE(hcryp);
-
- for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
- {
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- /* Write the header block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- }
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- /* Save formatted counter into the scratch buffer pScratch */
- for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
- }
- /* Reset bit 0 */
- hcryp->Init.pScratch[15U] &= 0xFEU;
-
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
-
- /* Set the input and output addresses and start DMA transfer */
- CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
-
- /* Unlock process */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
- else
- {
- return HAL_ERROR;
- }
- }
-
- /**
- * @brief Initializes the CRYP peripheral in AES GCM decryption mode using DMA.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pCypherData: Pointer to the cyphertext buffer.
- * @param Size: Length of the cyphertext buffer, must be a multiple of 16
- * @param pPlainData: Pointer to the plaintext buffer
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
- {
- uint32_t tickstart = 0U;
- uint32_t inputaddr;
- uint32_t outputaddr;
-
- if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
- {
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- inputaddr = (uint32_t)pCypherData;
- outputaddr = (uint32_t)pPlainData;
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES GCM decryption mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
-
- /* Enable CRYP to start the init phase */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
-
- /* Set the header phase */
- if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1U) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- /* Disable the CRYP peripheral */
- __HAL_CRYP_DISABLE(hcryp);
-
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
-
- /* Set the input and output addresses and start DMA transfer */
- CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
-
- /* Unlock process */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
- else
- {
- return HAL_ERROR;
- }
- }
-
- /**
- * @brief Initializes the CRYP peripheral in AES CCM decryption mode using DMA
- * then decrypted pCypherData. The cypher data are available in pPlainData.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pCypherData: Pointer to the cyphertext buffer
- * @param Size: Length of the plaintext buffer, must be a multiple of 16
- * @param pPlainData: Pointer to the plaintext buffer
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
- {
- uint32_t tickstart = 0U;
- uint32_t inputaddr;
- uint32_t outputaddr;
- uint32_t headersize;
- uint32_t headeraddr;
- uint32_t loopcounter = 0U;
- uint32_t bufferidx = 0U;
- uint8_t blockb0[16U] = {0};/* Block B0 */
- uint8_t ctr[16U] = {0}; /* Counter */
- uint32_t b0addr = (uint32_t)blockb0;
-
- if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
- {
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- inputaddr = (uint32_t)pCypherData;
- outputaddr = (uint32_t)pPlainData;
-
- headersize = hcryp->Init.HeaderSize;
- headeraddr = (uint32_t)hcryp->Init.Header;
-
- hcryp->CrypInCount = Size;
- hcryp->pCrypInBuffPtr = pCypherData;
- hcryp->pCrypOutBuffPtr = pPlainData;
- hcryp->CrypOutCount = Size;
-
- /* Change the CRYP peripheral state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Check if initialization phase has already been performed */
- if(hcryp->Phase == HAL_CRYP_PHASE_READY)
- {
- /************************ Formatting the header block *******************/
- if(headersize != 0U)
- {
- /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
- if(headersize < 65280U)
- {
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
- hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
- headersize += 2U;
- }
- else
- {
- /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
- hcryp->Init.pScratch[bufferidx++] = 0xFFU;
- hcryp->Init.pScratch[bufferidx++] = 0xFEU;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
- hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
- headersize += 6U;
- }
- /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
- for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
- {
- hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
- }
- /* Check if the header size is modulo 16 */
- if ((headersize % 16U) != 0U)
- {
- /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
- for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = 0U;
- }
- /* Set the header size to modulo 16 */
- headersize = ((headersize/16U) + 1U) * 16U;
- }
- /* Set the pointer headeraddr to hcryp->Init.pScratch */
- headeraddr = (uint32_t)hcryp->Init.pScratch;
- }
- /*********************** Formatting the block B0 ************************/
- if(headersize != 0U)
- {
- blockb0[0U] = 0x40U;
- }
- /* Flags byte */
- /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07) << 3);
- blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
-
- for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
- {
- blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
- }
- for ( ; loopcounter < 13U; loopcounter++)
- {
- blockb0[loopcounter+1U] = 0U;
- }
-
- blockb0[14U] = (Size >> 8U);
- blockb0[15U] = (Size & 0xFFU);
-
- /************************* Formatting the initial counter ***************/
- /* Byte 0:
- Bits 7 and 6 are reserved and shall be set to 0
- Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
- blocks are distinct from B0
- Bits 0, 1, and 2 contain the same encoding of q as in B0
- */
- ctr[0U] = blockb0[0U] & 0x07U;
- /* byte 1 to NonceSize is the IV (Nonce) */
- for(loopcounter = 1U; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
- {
- ctr[loopcounter] = blockb0[loopcounter];
- }
- /* Set the LSB to 1 */
- ctr[15U] |= 0x01U;
-
- /* Set the key */
- CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
-
- /* Set the CRYP peripheral in AES CCM mode */
- __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
-
- /* Set the Initialization Vector */
- CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
-
- /* Select init phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
-
- b0addr = (uint32_t)blockb0;
- /* Write the blockb0 block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
- b0addr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(b0addr);
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE(hcryp);
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
- {
- /* Check for the Timeout */
-
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
-
- }
- }
- /***************************** Header phase *****************************/
- if(headersize != 0U)
- {
- /* Select header phase */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
-
- /* Enable Crypto processor */
- __HAL_CRYP_ENABLE(hcryp);
-
- for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
- {
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- /* Write the header block in the IN FIFO */
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- hcryp->Instance->DR = *(uint32_t*)(headeraddr);
- headeraddr+=4U;
- }
-
- /* Get tick */
- tickstart = HAL_GetTick();
-
- while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
- {
- /* Check for the Timeout */
- if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
- {
- /* Change state */
- hcryp->State = HAL_CRYP_STATE_TIMEOUT;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_TIMEOUT;
- }
- }
- }
- /* Save formatted counter into the scratch buffer pScratch */
- for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
- {
- hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
- }
- /* Reset bit 0 */
- hcryp->Init.pScratch[15U] &= 0xFEU;
- /* Select payload phase once the header phase is performed */
- __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
-
- /* Flush FIFO */
- __HAL_CRYP_FIFO_FLUSH(hcryp);
-
- /* Set the phase */
- hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
- }
- /* Set the input and output addresses and start DMA transfer */
- CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
-
- /* Unlock process */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
- else
- {
- return HAL_ERROR;
- }
- }
-
- /**
- * @}
- */
-
- /** @defgroup CRYPEx_Exported_Functions_Group2 CRYPEx IRQ handler management
- * @brief CRYPEx IRQ handler.
- *
- @verbatim
- ==============================================================================
- ##### CRYPEx IRQ handler management #####
- ==============================================================================
- [..] This section provides CRYPEx IRQ handler function.
-
- @endverbatim
- * @{
- */
-
- /**
- * @brief This function handles CRYPEx interrupt request.
- * @param hcryp: pointer to a CRYPEx_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval None
- */
-
- void HAL_CRYPEx_GCMCCM_IRQHandler(CRYP_HandleTypeDef *hcryp)
- {
- switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION)
- {
- case CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT:
- HAL_CRYPEx_AESGCM_Encrypt_IT(hcryp, NULL, 0U, NULL);
- break;
-
- case CRYP_CR_ALGOMODE_AES_GCM_DECRYPT:
- HAL_CRYPEx_AESGCM_Decrypt_IT(hcryp, NULL, 0U, NULL);
- break;
-
- case CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT:
- HAL_CRYPEx_AESCCM_Encrypt_IT(hcryp, NULL, 0U, NULL);
- break;
-
- case CRYP_CR_ALGOMODE_AES_CCM_DECRYPT:
- HAL_CRYPEx_AESCCM_Decrypt_IT(hcryp, NULL, 0U, NULL);
- break;
-
- default:
- break;
- }
- }
-
- /**
- * @}
- */
-
- /**
- * @}
- */
- #endif /* CRYP */
-
- #if defined (AES)
-
- /** @defgroup CRYPEx_Private_Constants CRYPEx Private Constants
- * @{
- */
- #define CRYP_CCF_TIMEOUTVALUE 22000U /*!< CCF flag raising time-out value */
- #define CRYP_BUSY_TIMEOUTVALUE 22000U /*!< BUSY flag reset time-out value */
-
- #define CRYP_POLLING_OFF 0x0U /*!< No polling when padding */
- #define CRYP_POLLING_ON 0x1U /*!< Polling when padding */
- /**
- * @}
- */
-
- /* Private macro -------------------------------------------------------------*/
- /* Private variables ---------------------------------------------------------*/
- /* Private function prototypes -----------------------------------------------*/
- /** @defgroup CRYPEx_Private_Functions CRYPEx Private Functions
- * @{
- */
- static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout);
- static HAL_StatusTypeDef CRYP_ReadKey(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t Timeout);
- static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
- static void CRYP_GCMCMAC_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
- static void CRYP_GCMCMAC_DMAInCplt(DMA_HandleTypeDef *hdma);
- static void CRYP_GCMCMAC_DMAError(DMA_HandleTypeDef *hdma);
- static void CRYP_GCMCMAC_DMAOutCplt(DMA_HandleTypeDef *hdma);
- static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
- static HAL_StatusTypeDef CRYP_WaitOnBusyFlagReset(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
- static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
- static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
- static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
- static void CRYP_Padding(CRYP_HandleTypeDef *hcryp, uint32_t difflength, uint32_t polling);
- /**
- * @}
- */
-
- /* Exported functions ---------------------------------------------------------*/
-
- /** @defgroup CRYPEx_Exported_Functions CRYPEx Exported Functions
- * @{
- */
-
-
- /** @defgroup CRYPEx_Exported_Functions_Group1 Extended callback function
- * @brief Extended callback functions.
- *
- @verbatim
- ===============================================================================
- ##### Extended callback functions #####
- ===============================================================================
- [..] This section provides callback function:
- (+) Computation completed.
-
- @endverbatim
- * @{
- */
-
-
- /**
- * @brief Computation completed callbacks.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval None
- */
- __weak void HAL_CRYPEx_ComputationCpltCallback(CRYP_HandleTypeDef *hcryp)
- {
- /* Prevent unused argument(s) compilation warning */
- UNUSED(hcryp);
-
- /* NOTE : This function should not be modified; when the callback is needed,
- the HAL_CRYPEx_ComputationCpltCallback can be implemented in the user file
- */
- }
-
- /**
- * @}
- */
-
- /** @defgroup CRYPEx_Exported_Functions_Group2 AES extended processing functions
- * @brief Extended processing functions.
- *
- @verbatim
- ==============================================================================
- ##### AES extended processing functions #####
- ==============================================================================
- [..] This section provides functions allowing to:
- (+) Encrypt plaintext or decrypt cipher text using AES algorithm in different chaining modes.
- Functions are generic (handles ECB, CBC and CTR and all modes) and are only differentiated
- based on the processing type. Three processing types are available:
- (++) Polling mode
- (++) Interrupt mode
- (++) DMA mode
- (+) Generate and authentication tag in addition to encrypt/decrypt a plain/cipher text using AES
- algorithm in different chaining modes.
- Functions are generic (handles GCM, GMAC, CMAC and CCM when applicable) and process only one phase
- so that steps can be skipped if so required. Functions are only differentiated based on the processing type.
- Three processing types are available:
- (++) Polling mode
- (++) Interrupt mode
- (++) DMA mode
-
- @endverbatim
- * @{
- */
-
- /**
- * @brief Carry out in polling mode the ciphering or deciphering operation according to
- * hcryp->Init structure fields, all operating modes (encryption, key derivation and/or decryption) and
- * chaining modes ECB, CBC and CTR are managed by this function in polling mode.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pInputData: Pointer to the plain text in case of encryption or cipher text in case of decryption
- * or key derivation+decryption.
- * Parameter is meaningless in case of key derivation.
- * @param Size: Length of the input data buffer in bytes, must be a multiple of 16.
- * Parameter is meaningless in case of key derivation.
- * @param pOutputData: Pointer to the cipher text in case of encryption or plain text in case of
- * decryption/key derivation+decryption, or pointer to the derivative keys in
- * case of key derivation only.
- * @param Timeout: Specify Timeout value
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AES(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData, uint32_t Timeout)
- {
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Check parameters setting */
- if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
- {
- if (pOutputData == NULL)
- {
- return HAL_ERROR;
- }
- }
- else
- {
- if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
- }
-
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Call CRYP_ReadKey() API if the operating mode is set to
- key derivation, CRYP_ProcessData() otherwise */
- if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
- {
- if(CRYP_ReadKey(hcryp, pOutputData, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- }
- else
- {
- if(CRYP_ProcessData(hcryp, pInputData, Size, pOutputData, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- }
-
- /* If the state has not been set to SUSPENDED, set it to
- READY, otherwise keep it as it is */
- if (hcryp->State != HAL_CRYP_STATE_SUSPENDED)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- }
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
- }
-
- /**
- * @brief Carry out in interrupt mode the ciphering or deciphering operation according to
- * hcryp->Init structure fields, all operating modes (encryption, key derivation and/or decryption) and
- * chaining modes ECB, CBC and CTR are managed by this function in interrupt mode.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pInputData: Pointer to the plain text in case of encryption or cipher text in case of decryption
- * or key derivation+decryption.
- * Parameter is meaningless in case of key derivation.
- * @param Size: Length of the input data buffer in bytes, must be a multiple of 16.
- * Parameter is meaningless in case of key derivation.
- * @param pOutputData: Pointer to the cipher text in case of encryption or plain text in case of
- * decryption/key derivation+decryption, or pointer to the derivative keys in
- * case of key derivation only.
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AES_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData)
- {
- uint32_t inputaddr = 0U;
-
- if(hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Check parameters setting */
- if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
- {
- if (pOutputData == NULL)
- {
- return HAL_ERROR;
- }
- }
- else
- {
- if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
- }
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* If operating mode is not limited to key derivation only,
- get the buffers addresses and sizes */
- if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION)
- {
-
- hcryp->CrypInCount = Size;
- hcryp->pCrypInBuffPtr = pInputData;
- hcryp->pCrypOutBuffPtr = pOutputData;
- hcryp->CrypOutCount = Size;
- }
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Enable Computation Complete Flag and Error Interrupts */
- __HAL_CRYP_ENABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
-
- /* If operating mode is key derivation only, the input data have
- already been entered during the initialization process. For
- the other operating modes, they are fed to the CRYP hardware
- block at this point. */
- if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION)
- {
- /* Initiate the processing under interrupt in entering
- the first input data */
- inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
- /* Increment/decrement instance pointer/counter */
- hcryp->pCrypInBuffPtr += 16U;
- hcryp->CrypInCount -= 16U;
- /* Write the first input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- }
-
- /* Return function status */
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
- }
-
- /**
- * @brief Carry out in DMA mode the ciphering or deciphering operation according to
- * hcryp->Init structure fields.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pInputData: Pointer to the plain text in case of encryption or cipher text in case of decryption
- * or key derivation+decryption.
- * @param Size: Length of the input data buffer in bytes, must be a multiple of 16.
- * @param pOutputData: Pointer to the cipher text in case of encryption or plain text in case of
- * decryption/key derivation+decryption.
- * @note Chaining modes ECB, CBC and CTR are managed by this function in DMA mode.
- * @note Supported operating modes are encryption, decryption and key derivation with decryption.
- * @note No DMA channel is provided for key derivation only and therefore, access to AES_KEYRx
- * registers must be done by software.
- * @note This API is not applicable to key derivation only; for such a mode, access to AES_KEYRx
- * registers must be done by software thru HAL_CRYPEx_AES() or HAL_CRYPEx_AES_IT() APIs.
- * @note pInputData and pOutputData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AES_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData)
- {
- uint32_t inputaddr = 0U;
- uint32_t outputaddr = 0U;
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* Check parameters setting */
- if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
- {
- /* no DMA channel is provided for key derivation operating mode,
- access to AES_KEYRx registers must be done by software */
- return HAL_ERROR;
- }
- else
- {
- if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
- }
-
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- inputaddr = (uint32_t)pInputData;
- outputaddr = (uint32_t)pOutputData;
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Set the input and output addresses and start DMA transfer */
- CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Return function status */
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
- }
-
- /**
- * @brief Carry out in polling mode the authentication tag generation as well as the ciphering or deciphering
- * operation according to hcryp->Init structure fields.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pInputData:
- * - pointer to payload data in GCM payload phase,
- * - pointer to B0 block in CMAC header phase,
- * - pointer to C block in CMAC final phase.
- * - Parameter is meaningless in case of GCM/GMAC init, header and final phases.
- * @param Size:
- * - length of the input payload data buffer in bytes,
- * - length of B0 block (in bytes) in CMAC header phase,
- * - length of C block (in bytes) in CMAC final phase.
- * - Parameter is meaningless in case of GCM/GMAC init and header phases.
- * @param pOutputData:
- * - pointer to plain or cipher text in GCM payload phase,
- * - pointer to authentication tag in GCM/GMAC and CMAC final phases.
- * - Parameter is meaningless in case of GCM/GMAC init and header phases
- * and in case of CMAC header phase.
- * @param Timeout: Specify Timeout value
- * @note Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC, CMAC and CCM when the latter is applicable.
- * @note Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes
- * can be skipped by the user if so required.
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AES_Auth(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData, uint32_t Timeout)
- {
- uint32_t index = 0U;
- uint32_t inputaddr = 0U;
- uint32_t outputaddr = 0U;
- uint32_t tagaddr = 0U;
- uint64_t headerlength = 0U;
- uint64_t inputlength = 0U;
- uint64_t payloadlength = 0U;
- uint32_t difflength = 0U;
- uint32_t addhoc_process = 0U;
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* input/output parameters check */
- if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
- {
- if ((hcryp->Init.Header != NULL) && (hcryp->Init.HeaderSize == 0U))
- {
- return HAL_ERROR;
- }
- #if defined(AES_CR_NPBLB)
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
- #else
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
- #endif
- {
- /* In case of CMAC (or CCM) header phase resumption, we can have pInputData = NULL and Size = 0 */
- if (((pInputData != NULL) && (Size == 0U)) || ((pInputData == NULL) && (Size != 0U)))
- {
- return HAL_ERROR;
- }
- }
- }
- else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
- {
- if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
- }
- else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
- {
- if (pOutputData == NULL)
- {
- return HAL_ERROR;
- }
- #if defined(AES_CR_NPBLB)
- if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC) && (pInputData == NULL))
- #else
- if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
- #endif
- {
- return HAL_ERROR;
- }
- }
-
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /*==============================================*/
- /* GCM/GMAC (or CCM when applicable) init phase */
- /*==============================================*/
- /* In case of init phase, the input data (Key and Initialization Vector) have
- already been entered during the initialization process. Therefore, the
- API just waits for the CCF flag to be set. */
- if (hcryp->Init.GCMCMACPhase == CRYP_INIT_PHASE)
- {
- /* just wait for hash computation */
- if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- /* Mark that the initialization phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
- }
- /*=====================================*/
- /* GCM/GMAC or (CCM/)CMAC header phase */
- /*=====================================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
- {
- /* Set header phase; for GCM or GMAC, set data-byte at this point */
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
- {
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_HEADER_PHASE|hcryp->Init.DataType);
- }
- else
- {
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_HEADER_PHASE);
- }
-
- /* Enable the Peripheral */
- __HAL_CRYP_ENABLE();
-
- #if !defined(AES_CR_NPBLB)
- /* in case of CMAC, enter B0 block in header phase, before the header itself. */
- /* If Size = 0 (possible case of resumption after CMAC header phase suspension),
- skip these steps and go directly to header buffer feeding to the HW */
- if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (Size != 0U))
- {
- inputaddr = (uint32_t)pInputData;
-
- for(index=0U; (index < Size); index += 16U)
- {
- /* Write the Input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
-
- if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
-
- /* If the suspension flag has been raised and if the processing is not about
- to end, suspend processing */
- if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16U) < Size))
- {
- /* reset SuspendRequest */
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_SUSPENDED;
- /* Mark that the header phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
-
- /* Save current reading and writing locations of Input and Output buffers */
- hcryp->pCrypInBuffPtr = (uint8_t *)inputaddr;
- /* Save the total number of bytes (B blocks + header) that remain to be
- processed at this point */
- hcryp->CrypInCount = hcryp->Init.HeaderSize + Size - (index+16U);
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_OK;
- }
- } /* for(index=0; (index < Size); index += 16) */
- }
- #endif /* !defined(AES_CR_NPBLB) */
-
- /* Enter header */
- inputaddr = (uint32_t)hcryp->Init.Header;
- /* Local variable headerlength is a number of bytes multiple of 128 bits,
- remaining header data (if any) are handled after this loop */
- headerlength = (((hcryp->Init.HeaderSize)/16U)*16U) ;
- if ((hcryp->Init.HeaderSize % 16U) != 0U)
- {
- difflength = (uint32_t) (hcryp->Init.HeaderSize - headerlength);
- }
- for(index=0U; index < headerlength; index += 16U)
- {
- /* Write the Input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
-
- if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
-
- /* If the suspension flag has been raised and if the processing is not about
- to end, suspend processing */
- if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16U) < headerlength))
- {
- /* reset SuspendRequest */
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_SUSPENDED;
- /* Mark that the header phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
-
- /* Save current reading and writing locations of Input and Output buffers */
- hcryp->pCrypInBuffPtr = (uint8_t *)inputaddr;
- /* Save the total number of bytes that remain to be processed at this point */
- hcryp->CrypInCount = hcryp->Init.HeaderSize - (index+16U);
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_OK;
- }
- }
-
- /* Case header length is not a multiple of 16 bytes */
- if (difflength != 0U)
- {
- hcryp->pCrypInBuffPtr = (uint8_t *)inputaddr;
- CRYP_Padding(hcryp, difflength, CRYP_POLLING_ON);
- }
-
- /* Mark that the header phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
- }
- /*============================================*/
- /* GCM (or CCM when applicable) payload phase */
- /*============================================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
- {
-
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PAYLOAD_PHASE);
-
- /* if the header phase has been bypassed, AES must be enabled again */
- if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
- {
- __HAL_CRYP_ENABLE();
- }
-
- inputaddr = (uint32_t)pInputData;
- outputaddr = (uint32_t)pOutputData;
-
- /* Enter payload */
- /* Specific handling to manage payload last block size less than 128 bits */
- if ((Size % 16U) != 0U)
- {
- payloadlength = (Size/16U) * 16U;
- difflength = (uint32_t) (Size - payloadlength);
- addhoc_process = 1U;
- }
- else
- {
- payloadlength = Size;
- addhoc_process = 0U;
- }
-
- /* Feed payload */
- for(index=0U; index < payloadlength; index += 16U)
- {
- /* Write the Input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
-
- if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
-
- /* Retrieve output data: read the output block
- from the Data Output Register */
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
-
- /* If the suspension flag has been raised and if the processing is not about
- to end, suspend processing */
- if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16U) < payloadlength))
- {
- /* no flag waiting under IRQ handling */
- if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
- {
- /* Ensure that Busy flag is reset */
- if(CRYP_WaitOnBusyFlagReset(hcryp, CRYP_BUSY_TIMEOUTVALUE) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
- }
- /* reset SuspendRequest */
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_SUSPENDED;
- /* Mark that the header phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
-
- /* Save current reading and writing locations of Input and Output buffers */
- hcryp->pCrypOutBuffPtr = (uint8_t *)outputaddr;
- hcryp->pCrypInBuffPtr = (uint8_t *)inputaddr;
- /* Save the number of bytes that remain to be processed at this point */
- hcryp->CrypInCount = Size - (index+16U);
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_OK;
- }
-
- }
-
- /* Additional processing to manage GCM(/CCM) encryption and decryption cases when
- payload last block size less than 128 bits */
- if (addhoc_process == 1U)
- {
- hcryp->pCrypInBuffPtr = (uint8_t *)inputaddr;
- hcryp->pCrypOutBuffPtr = (uint8_t *)outputaddr;
- CRYP_Padding(hcryp, difflength, CRYP_POLLING_ON);
- } /* (addhoc_process == 1) */
-
- /* Mark that the payload phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;
- }
- /*====================================*/
- /* GCM/GMAC or (CCM/)CMAC final phase */
- /*====================================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
- {
- tagaddr = (uint32_t)pOutputData;
-
- #if defined(AES_CR_NPBLB)
- /* By default, clear NPBLB field */
- CLEAR_BIT(hcryp->Instance->CR, AES_CR_NPBLB);
- #endif
-
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_FINAL_PHASE);
-
- /* if the header and payload phases have been bypassed, AES must be enabled again */
- if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
- {
- __HAL_CRYP_ENABLE();
- }
-
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
- {
- headerlength = hcryp->Init.HeaderSize * 8U; /* Header length in bits */
- inputlength = Size * 8U; /* input length in bits */
-
-
- if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
- {
- hcryp->Instance->DINR = __RBIT((headerlength)>>32U);
- hcryp->Instance->DINR = __RBIT(headerlength);
- hcryp->Instance->DINR = __RBIT((inputlength)>>32U);
- hcryp->Instance->DINR = __RBIT(inputlength);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
- {
- hcryp->Instance->DINR = __REV((headerlength)>>32U);
- hcryp->Instance->DINR = __REV(headerlength);
- hcryp->Instance->DINR = __REV((inputlength)>>32U);
- hcryp->Instance->DINR = __REV(inputlength);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
- {
- hcryp->Instance->DINR = __ROR((headerlength)>>32U, 16U);
- hcryp->Instance->DINR = __ROR(headerlength, 16U);
- hcryp->Instance->DINR = __ROR((inputlength)>>32U, 16U);
- hcryp->Instance->DINR = __ROR(inputlength, 16U);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
- {
- hcryp->Instance->DINR = (uint32_t)(headerlength>>32U);
- hcryp->Instance->DINR = (uint32_t)(headerlength);
- hcryp->Instance->DINR = (uint32_t)(inputlength>>32U);
- hcryp->Instance->DINR = (uint32_t)(inputlength);
- }
- }
- #if !defined(AES_CR_NPBLB)
- else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
- {
- inputaddr = (uint32_t)pInputData;
- /* Enter the last block made of a 128-bit value formatted
- from the original B0 packet. */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- }
- #endif
-
-
- if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
-
- /* Read the Auth TAG in the Data Out register */
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
- tagaddr+=4U;
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
- tagaddr+=4U;
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
- tagaddr+=4U;
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
-
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- /* Mark that the final phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
- /* Disable the Peripheral */
- __HAL_CRYP_DISABLE();
- }
- /*=================================================*/
- /* case incorrect hcryp->Init.GCMCMACPhase setting */
- /*=================================================*/
- else
- {
- hcryp->State = HAL_CRYP_STATE_ERROR;
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
- }
-
-
-
-
- /**
- * @brief Carry out in interrupt mode the authentication tag generation as well as the ciphering or deciphering
- * operation according to hcryp->Init structure fields.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pInputData:
- * - pointer to payload data in GCM payload phase,
- * - pointer to B0 block in CMAC header phase,
- * - pointer to C block in CMAC final phase.
- * Parameter is meaningless in case of GCM/GMAC init, header and final phases.
- * @param Size:
- * - length of the input payload data buffer in bytes,
- * - length of B0 block (in bytes) in CMAC header phase,
- * - length of C block (in bytes) in CMAC final phase.
- * - Parameter is meaningless in case of GCM/GMAC init and header phases.
- * @param pOutputData:
- * - pointer to plain or cipher text in GCM payload phase,
- * - pointer to authentication tag in GCM/GMAC and CMAC final phases.
- * - Parameter is meaningless in case of GCM/GMAC init and header phases
- * and in case of CMAC header phase.
- * @note Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC and CMAC.
- * @note Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes
- * can be skipped by the user if so required.
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AES_Auth_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData)
- {
-
- uint32_t inputaddr = 0U;
- uint64_t headerlength = 0U;
- uint64_t inputlength = 0U;
- uint32_t index = 0U;
- uint32_t addhoc_process = 0U;
- uint32_t difflength = 0U;
- uint32_t difflengthmod4 = 0U;
- uint32_t mask[3U] = {0x0FFU, 0x0FFFFU, 0x0FFFFFFU};
-
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* input/output parameters check */
- if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
- {
- if ((hcryp->Init.Header != NULL) && (hcryp->Init.HeaderSize == 0U))
- {
- return HAL_ERROR;
- }
- #if defined(AES_CR_NPBLB)
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
- #else
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
- #endif
- {
- /* In case of CMAC header phase resumption, we can have pInputData = NULL and Size = 0 */
- if (((pInputData != NULL) && (Size == 0U)) || ((pInputData == NULL) && (Size != 0U)))
- {
- return HAL_ERROR;
- }
- }
- }
- else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
- {
- if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
- }
- else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
- {
- if (pOutputData == NULL)
- {
- return HAL_ERROR;
- }
- #if defined(AES_CR_NPBLB)
- if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC) && (pInputData == NULL))
- #else
- if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
- #endif
- {
- return HAL_ERROR;
- }
- }
-
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Enable Computation Complete Flag and Error Interrupts */
- __HAL_CRYP_ENABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
-
- /*==============================================*/
- /* GCM/GMAC (or CCM when applicable) init phase */
- /*==============================================*/
- if (hcryp->Init.GCMCMACPhase == CRYP_INIT_PHASE)
- {
- /* In case of init phase, the input data (Key and Initialization Vector) have
- already been entered during the initialization process. Therefore, the
- software just waits for the CCF interrupt to be raised and which will
- be handled by CRYP_AES_Auth_IT() API. */
- }
- /*=====================================*/
- /* GCM/GMAC or (CCM/)CMAC header phase */
- /*=====================================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
- {
-
- #if defined(AES_CR_NPBLB)
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
- #else
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
- #endif
- {
- /* In case of CMAC, B blocks are first entered, before the header.
- Therefore, B blocks and the header are entered back-to-back
- as if it was only one single block.
- However, in case of resumption after suspension, if all the
- B blocks have been entered (in that case, Size = 0), only the
- remainder of the non-processed header bytes are entered. */
- if (Size != 0U)
- {
- hcryp->CrypInCount = Size + hcryp->Init.HeaderSize;
- hcryp->pCrypInBuffPtr = pInputData;
- }
- else
- {
- hcryp->CrypInCount = hcryp->Init.HeaderSize;
- hcryp->pCrypInBuffPtr = hcryp->Init.Header;
- }
- }
- else
- {
- /* Get the header addresses and sizes */
- hcryp->CrypInCount = hcryp->Init.HeaderSize;
- hcryp->pCrypInBuffPtr = hcryp->Init.Header;
- }
-
- inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
-
- /* Set header phase; for GCM or GMAC, set data-byte at this point */
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
- {
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_HEADER_PHASE|hcryp->Init.DataType);
- }
- else
- {
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_HEADER_PHASE);
- }
-
- /* Enable the Peripheral */
- __HAL_CRYP_ENABLE();
-
- /* Increment/decrement instance pointer/counter */
- if (hcryp->CrypInCount == 0U)
- {
- /* Case of no header */
- hcryp->State = HAL_CRYP_STATE_READY;
- return HAL_OK;
- }
- else if (hcryp->CrypInCount < 16U)
- {
- hcryp->CrypInCount = 0U;
- addhoc_process = 1U;
- difflength = (uint32_t) (hcryp->Init.HeaderSize);
- difflengthmod4 = difflength%4U;
- }
- else
- {
- hcryp->pCrypInBuffPtr += 16U;
- hcryp->CrypInCount -= 16U;
- }
-
- #if defined(AES_CR_NPBLB)
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
- #else
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
- #endif
- {
- if (hcryp->CrypInCount == hcryp->Init.HeaderSize)
- {
- /* All B blocks will have been entered after the next
- four DINR writing, so point at header buffer for
- the next iteration */
- hcryp->pCrypInBuffPtr = hcryp->Init.Header;
- }
- }
-
- /* Enter header first block to initiate the process
- in the Data Input register */
- if (addhoc_process == 0U)
- {
- /* Header has size equal or larger than 128 bits */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- }
- else
- {
- /* Header has size less than 128 bits */
- /* Enter complete words when possible */
- for(index=0U; index < (difflength/4U); index ++)
- {
- /* Write the Input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- }
- /* Enter incomplete word padded with zeroes if applicable
- (case of header length not a multiple of 32-bits) */
- if (difflengthmod4 != 0U)
- {
- hcryp->Instance->DINR = ((*(uint32_t*)(inputaddr)) & mask[difflengthmod4-1U]);
- }
- /* Pad with zero-words to reach 128-bit long block and wrap-up header feeding to the IP */
- for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)
- {
- hcryp->Instance->DINR = 0U;
- }
-
- }
- }
- /*============================================*/
- /* GCM (or CCM when applicable) payload phase */
- /*============================================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
- {
- /* Get the buffer addresses and sizes */
- hcryp->CrypInCount = Size;
- hcryp->pCrypInBuffPtr = pInputData;
- hcryp->pCrypOutBuffPtr = pOutputData;
- hcryp->CrypOutCount = Size;
-
- inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
-
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCM_PAYLOAD_PHASE);
-
- /* if the header phase has been bypassed, AES must be enabled again */
- if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
- {
- __HAL_CRYP_ENABLE();
- }
-
- /* Specific handling to manage payload size less than 128 bits */
- if (Size < 16U)
- {
- #if defined(AES_CR_NPBLB)
- /* In case of GCM encryption or CCM decryption, specify the number of padding
- bytes in last block of payload */
- if (READ_BIT(hcryp->Instance->CR, AES_CR_GCMPH) == CRYP_PAYLOAD_PHASE)
- {
- if (((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_GCM_GMAC)
- && (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_ENCRYPT))
- || ((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_CCM_CMAC)
- && (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_DECRYPT)))
- {
- /* Set NPBLB field in writing the number of padding bytes
- for the last block of payload */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 16U - difflength);
- }
- }
- #else
- /* Software workaround applied to GCM encryption only */
- if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
- {
- /* Change the mode configured in CHMOD bits of CR register to select CTR mode */
- __HAL_CRYP_SET_CHAININGMODE(CRYP_CHAINMODE_AES_CTR);
- }
- #endif
-
- /* Set hcryp->CrypInCount to 0 (no more data to enter) */
- hcryp->CrypInCount = 0U;
-
- /* Insert the last block (which size is inferior to 128 bits) padded with zeroes,
- to have a complete block of 128 bits */
- difflength = (uint32_t) (Size);
- difflengthmod4 = difflength%4U;
- /* Insert the last block (which size is inferior to 128 bits) padded with zeroes
- to have a complete block of 128 bits */
- for(index=0U; index < (difflength/4U); index ++)
- {
- /* Write the Input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- }
- /* If required, manage input data size not multiple of 32 bits */
- if (difflengthmod4 != 0U)
- {
- hcryp->Instance->DINR = ((*(uint32_t*)(inputaddr)) & mask[difflengthmod4-1U]);
- }
- /* Wrap-up in padding with zero-words if applicable */
- for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)
- {
- hcryp->Instance->DINR = 0U;
- }
- }
- else
- {
- /* Increment/decrement instance pointer/counter */
- hcryp->pCrypInBuffPtr += 16U;
- hcryp->CrypInCount -= 16U;
-
- /* Enter payload first block to initiate the process
- in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- }
- }
- /*====================================*/
- /* GCM/GMAC or (CCM/)CMAC final phase */
- /*====================================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
- {
- hcryp->pCrypOutBuffPtr = pOutputData;
-
- #if defined(AES_CR_NPBLB)
- /* By default, clear NPBLB field */
- CLEAR_BIT(hcryp->Instance->CR, AES_CR_NPBLB);
- #endif
-
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_FINAL_PHASE);
-
- /* if the header and payload phases have been bypassed, AES must be enabled again */
- if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
- {
- __HAL_CRYP_ENABLE();
- }
-
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
- {
- headerlength = hcryp->Init.HeaderSize * 8U; /* Header length in bits */
- inputlength = Size * 8U; /* Input length in bits */
- /* Write the number of bits in the header on 64 bits followed by the number
- of bits in the payload on 64 bits as well */
- if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
- {
- hcryp->Instance->DINR = __RBIT((headerlength)>>32U);
- hcryp->Instance->DINR = __RBIT(headerlength);
- hcryp->Instance->DINR = __RBIT((inputlength)>>32U);
- hcryp->Instance->DINR = __RBIT(inputlength);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
- {
- hcryp->Instance->DINR = __REV((headerlength)>>32U);
- hcryp->Instance->DINR = __REV(headerlength);
- hcryp->Instance->DINR = __REV((inputlength)>>32U);
- hcryp->Instance->DINR = __REV(inputlength);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
- {
- hcryp->Instance->DINR = __ROR((headerlength)>>32U, 16U);
- hcryp->Instance->DINR = __ROR(headerlength, 16U);
- hcryp->Instance->DINR = __ROR((inputlength)>>32U, 16U);
- hcryp->Instance->DINR = __ROR(inputlength, 16U);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
- {
- hcryp->Instance->DINR = (uint32_t)(headerlength>>32U);
- hcryp->Instance->DINR = (uint32_t)(headerlength);
- hcryp->Instance->DINR = (uint32_t)(inputlength>>32U);
- hcryp->Instance->DINR = (uint32_t)(inputlength);
- }
- }
- #if !defined(AES_CR_NPBLB)
- else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
- {
- inputaddr = (uint32_t)pInputData;
- /* Enter the last block made of a 128-bit value formatted
- from the original B0 packet. */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- }
- #endif
- }
- /*=================================================*/
- /* case incorrect hcryp->Init.GCMCMACPhase setting */
- /*=================================================*/
- else
- {
- hcryp->State = HAL_CRYP_STATE_ERROR;
- return HAL_ERROR;
- }
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
- }
-
-
-
-
- /**
- * @brief Carry out in DMA mode the authentication tag generation as well as the ciphering or deciphering
- * operation according to hcryp->Init structure fields.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @param pInputData:
- * - pointer to payload data in GCM payload phase,
- * - pointer to B0 block in CMAC header phase,
- * - pointer to C block in CMAC final phase.
- * - Parameter is meaningless in case of GCM/GMAC init, header and final phases.
- * @param Size:
- * - length of the input payload data buffer in bytes,
- * - length of B block (in bytes) in CMAC header phase,
- * - length of C block (in bytes) in CMAC final phase.
- * - Parameter is meaningless in case of GCM/GMAC init and header phases.
- * @param pOutputData:
- * - pointer to plain or cipher text in GCM payload phase,
- * - pointer to authentication tag in GCM/GMAC and CMAC final phases.
- * - Parameter is meaningless in case of GCM/GMAC init and header phases
- * and in case of CMAC header phase.
- * @note Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC and CMAC.
- * @note Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes
- * can be skipped by the user if so required.
- * @note pInputData and pOutputData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.
- * @retval HAL status
- */
- HAL_StatusTypeDef HAL_CRYPEx_AES_Auth_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData)
- {
- uint32_t inputaddr = 0U;
- uint32_t outputaddr = 0U;
- uint32_t tagaddr = 0U;
- uint64_t headerlength = 0U;
- uint64_t inputlength = 0U;
- uint64_t payloadlength = 0U;
-
-
- if (hcryp->State == HAL_CRYP_STATE_READY)
- {
- /* input/output parameters check */
- if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
- {
- if ((hcryp->Init.Header != NULL) && (hcryp->Init.HeaderSize == 0U))
- {
- return HAL_ERROR;
- }
- #if defined(AES_CR_NPBLB)
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
- #else
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
- #endif
- {
- if ((pInputData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
- }
- }
- else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
- {
- if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
- }
- else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
- {
- if (pOutputData == NULL)
- {
- return HAL_ERROR;
- }
- #if defined(AES_CR_NPBLB)
- if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC) && (pInputData == NULL))
- #else
- if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
- #endif
- {
- return HAL_ERROR;
- }
- }
-
- /* Process Locked */
- __HAL_LOCK(hcryp);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_BUSY;
-
- /*==============================================*/
- /* GCM/GMAC (or CCM when applicable) init phase */
- /*==============================================*/
- /* In case of init phase, the input data (Key and Initialization Vector) have
- already been entered during the initialization process. No DMA transfer is
- required at that point therefore, the software just waits for the CCF flag
- to be raised. */
- if (hcryp->Init.GCMCMACPhase == CRYP_INIT_PHASE)
- {
- /* just wait for hash computation */
- if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- /* Mark that the initialization phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
- hcryp->State = HAL_CRYP_STATE_READY;
- }
- /*===============================*/
- /* GCM/GMAC or CMAC header phase */
- /*===============================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
- {
- /* Set header phase; for GCM or GMAC, set data-byte at this point */
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
- {
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_GCMCMAC_HEADER_PHASE|hcryp->Init.DataType);
- }
- else
- {
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_HEADER_PHASE);
- }
-
- #if !defined(AES_CR_NPBLB)
- /* enter first B0 block in polling mode (no DMA transfer for B0) */
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
- {
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE();
-
- inputaddr = (uint32_t)pInputData;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
-
- if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- }
- #endif
-
- /* No header case */
- if (hcryp->Init.Header == NULL)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Mark that the header phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_OK;
- }
-
- inputaddr = (uint32_t)hcryp->Init.Header;
- if ((hcryp->Init.HeaderSize % 16U) != 0U)
- {
-
- if (hcryp->Init.HeaderSize < 16U)
- {
- CRYP_Padding(hcryp, (uint32_t) (hcryp->Init.HeaderSize), CRYP_POLLING_OFF);
-
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Mark that the header phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
-
- /* CCF flag indicating header phase AES processing completion
- will be checked at the start of the next phase:
- - payload phase (GCM / CCM when applicable)
- - final phase (GMAC or CMAC). */
- }
- else
- {
- /* Local variable headerlength is a number of bytes multiple of 128 bits,
- remaining header data (if any) are handled after this loop */
- headerlength = (((hcryp->Init.HeaderSize)/16U)*16U) ;
- /* Store the ending transfer point */
- hcryp->pCrypInBuffPtr = hcryp->Init.Header + headerlength;
- hcryp->CrypInCount = (uint32_t)(hcryp->Init.HeaderSize - headerlength); /* remainder */
-
- /* Set the input and output addresses and start DMA transfer */
- /* (incomplete DMA transfer, will be wrapped up after completion of
- the first one (initiated here) with data padding */
- CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, headerlength, 0U);
- }
- }
- else
- {
- hcryp->CrypInCount = 0U;
- /* Set the input address and start DMA transfer */
- CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, hcryp->Init.HeaderSize, 0U);
- }
-
- }
- /*============================================*/
- /* GCM (or CCM when applicable) payload phase */
- /*============================================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
- {
- /* Coming from header phase, wait for CCF flag to be raised
- if header present and fed to the IP in the previous phase */
- if (hcryp->Init.Header != NULL)
- {
- if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
- }
- else
- {
- /* Enable the Peripheral since wasn't in header phase (no header case) */
- __HAL_CRYP_ENABLE();
- }
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
-
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PAYLOAD_PHASE);
-
- /* Specific handling to manage payload size less than 128 bits */
- if ((Size % 16U) != 0U)
- {
- inputaddr = (uint32_t)pInputData;
- outputaddr = (uint32_t)pOutputData;
- if (Size < 16U)
- {
- /* Block is now entered in polling mode, no actual gain in resorting to DMA */
- hcryp->pCrypInBuffPtr = (uint8_t *)inputaddr;
- hcryp->pCrypOutBuffPtr = (uint8_t *)outputaddr;
-
- CRYP_Padding(hcryp, (uint32_t)Size, CRYP_POLLING_ON);
-
- /* Change the CRYP state to ready */
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Mark that the payload phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;
-
- /* Call output data transfer complete callback */
- HAL_CRYP_OutCpltCallback(hcryp);
- }
- else
- {
- payloadlength = (Size/16U) * 16U;
-
- /* Store the ending transfer points */
- hcryp->pCrypInBuffPtr = pInputData + payloadlength;
- hcryp->pCrypOutBuffPtr = pOutputData + payloadlength;
- hcryp->CrypInCount = (uint32_t)(Size - payloadlength); /* remainder */
-
- /* Set the input and output addresses and start DMA transfer */
- /* (incomplete DMA transfer, will be wrapped up with data padding
- after completion of the one initiated here) */
- CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, payloadlength, outputaddr);
- }
- }
- else
- {
- hcryp->CrypInCount = 0U;
- inputaddr = (uint32_t)pInputData;
- outputaddr = (uint32_t)pOutputData;
-
- /* Set the input and output addresses and start DMA transfer */
- CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
- }
- }
- /*====================================*/
- /* GCM/GMAC or (CCM/)CMAC final phase */
- /*====================================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
- {
- /* If coming from header phase (GMAC or CMAC case),
- wait for CCF flag to be raised */
- if (READ_BIT(hcryp->Instance->CR, AES_CR_GCMPH) == CRYP_HEADER_PHASE)
- {
- if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- }
-
- tagaddr = (uint32_t)pOutputData;
-
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_FINAL_PHASE);
-
- /* if the header and payload phases have been bypassed, AES must be enabled again */
- if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
- {
- __HAL_CRYP_ENABLE();
- }
-
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
- {
- headerlength = hcryp->Init.HeaderSize * 8U; /* Header length in bits */
- inputlength = Size * 8U; /* input length in bits */
- /* Write the number of bits in the header on 64 bits followed by the number
- of bits in the payload on 64 bits as well */
- if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
- {
- hcryp->Instance->DINR = __RBIT((headerlength)>>32U);
- hcryp->Instance->DINR = __RBIT(headerlength);
- hcryp->Instance->DINR = __RBIT((inputlength)>>32U);
- hcryp->Instance->DINR = __RBIT(inputlength);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
- {
- hcryp->Instance->DINR = __REV((headerlength)>>32U);
- hcryp->Instance->DINR = __REV(headerlength);
- hcryp->Instance->DINR = __REV((inputlength)>>32U);
- hcryp->Instance->DINR = __REV(inputlength);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
- {
- hcryp->Instance->DINR = __ROR((headerlength)>>32U, 16U);
- hcryp->Instance->DINR = __ROR(headerlength, 16U);
- hcryp->Instance->DINR = __ROR((inputlength)>>32U, 16U);
- hcryp->Instance->DINR = __ROR(inputlength, 16U);
- }
- else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
- {
- hcryp->Instance->DINR = (uint32_t)(headerlength>>32U);
- hcryp->Instance->DINR = (uint32_t)(headerlength);
- hcryp->Instance->DINR = (uint32_t)(inputlength>>32U);
- hcryp->Instance->DINR = (uint32_t)(inputlength);
- }
- }
- #if !defined(AES_CR_NPBLB)
- else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
- {
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
-
- inputaddr = (uint32_t)pInputData;
- /* Enter the last block made of a 128-bit value formatted
- from the original B0 packet. */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- }
- #endif
-
- /* No DMA transfer is required at that point therefore, the software
- just waits for the CCF flag to be raised. */
- if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- /* Read the Auth TAG in the IN FIFO */
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
- tagaddr+=4U;
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
- tagaddr+=4U;
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
- tagaddr+=4U;
- *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
-
- /* Mark that the final phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Disable the Peripheral */
- __HAL_CRYP_DISABLE();
- }
- /*=================================================*/
- /* case incorrect hcryp->Init.GCMCMACPhase setting */
- /*=================================================*/
- else
- {
- hcryp->State = HAL_CRYP_STATE_ERROR;
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
- }
-
- /**
- * @}
- */
-
- /** @defgroup CRYPEx_Exported_Functions_Group3 AES suspension/resumption functions
- * @brief Extended processing functions.
- *
- @verbatim
- ==============================================================================
- ##### AES extended suspension and resumption functions #####
- ==============================================================================
- [..] This section provides functions allowing to:
- (+) save in memory the Initialization Vector, the Key registers, the Control register or
- the Suspend registers when a process is suspended by a higher priority message
- (+) write back in CRYP hardware block the saved values listed above when the suspended
- lower priority message processing is resumed.
-
- @endverbatim
- * @{
- */
-
-
- /**
- * @brief In case of message processing suspension, read the Initialization Vector.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Output: Pointer to the buffer containing the saved Initialization Vector.
- * @note This value has to be stored for reuse by writing the AES_IVRx registers
- * as soon as the interrupted processing has to be resumed.
- * Applicable to all chaining modes.
- * @note AES must be disabled when reading or resetting the IV values.
- * @retval None
- */
- void HAL_CRYPEx_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
- {
- uint32_t outputaddr = (uint32_t)Output;
-
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR3);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR2);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR1);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR0);
- }
-
- /**
- * @brief In case of message processing resumption, rewrite the Initialization
- * Vector in the AES_IVRx registers.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Input: Pointer to the buffer containing the saved Initialization Vector to
- * write back in the CRYP hardware block.
- * @note Applicable to all chaining modes.
- * @note AES must be disabled when reading or resetting the IV values.
- * @retval None
- */
- void HAL_CRYPEx_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
- {
- uint32_t ivaddr = (uint32_t)Input;
-
- hcryp->Instance->IVR3 = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->IVR2 = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->IVR1 = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->IVR0 = __REV(*(uint32_t*)(ivaddr));
- }
-
-
- /**
- * @brief In case of message GCM/GMAC or CMAC processing suspension, read the Suspend Registers.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Output: Pointer to the buffer containing the saved Suspend Registers.
- * @note These values have to be stored for reuse by writing back the AES_SUSPxR registers
- * as soon as the interrupted processing has to be resumed.
- * @retval None
- */
- void HAL_CRYPEx_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
- {
- uint32_t outputaddr = (uint32_t)Output;
-
- /* In case of GCM payload phase encryption, check that suspension can be carried out */
- if (READ_BIT(hcryp->Instance->CR, (AES_CR_GCMPH|AES_CR_MODE)) == (CRYP_GCM_PAYLOAD_PHASE|CRYP_ALGOMODE_ENCRYPT))
- {
- /* Ensure that Busy flag is reset */
- if(CRYP_WaitOnBusyFlagReset(hcryp, CRYP_BUSY_TIMEOUTVALUE) != HAL_OK)
- {
- hcryp->ErrorCode |= HAL_CRYP_BUSY_ERROR;
- hcryp->State = HAL_CRYP_STATE_ERROR;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- HAL_CRYP_ErrorCallback(hcryp);
- return ;
- }
- }
-
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP7R);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP6R);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP5R);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP4R);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP3R);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP2R);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP1R);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP0R);
- }
-
- /**
- * @brief In case of message GCM/GMAC or CMAC processing resumption, rewrite the Suspend
- * Registers in the AES_SUSPxR registers.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Input: Pointer to the buffer containing the saved suspend registers to
- * write back in the CRYP hardware block.
- * @retval None
- */
- void HAL_CRYPEx_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
- {
- uint32_t ivaddr = (uint32_t)Input;
-
- hcryp->Instance->SUSP7R = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->SUSP6R = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->SUSP5R = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->SUSP4R = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->SUSP3R = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->SUSP2R = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->SUSP1R = __REV(*(uint32_t*)(ivaddr));
- ivaddr+=4U;
- hcryp->Instance->SUSP0R = __REV(*(uint32_t*)(ivaddr));
- }
-
-
- /**
- * @brief In case of message GCM/GMAC or CMAC processing suspension, read the Key Registers.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Output: Pointer to the buffer containing the saved Key Registers.
- * @param KeySize: Indicates the key size (128 or 256 bits).
- * @note These values have to be stored for reuse by writing back the AES_KEYRx registers
- * as soon as the interrupted processing has to be resumed.
- * @retval None
- */
- void HAL_CRYPEx_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t KeySize)
- {
- uint32_t keyaddr = (uint32_t)Output;
-
- if (KeySize == CRYP_KEYSIZE_256B)
- {
- *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR7);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR6);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR5);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR4);
- keyaddr+=4U;
- }
-
- *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR3);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR2);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR1);
- keyaddr+=4U;
- *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR0);
- }
-
- /**
- * @brief In case of message GCM/GMAC or CMAC processing resumption, rewrite the Key
- * Registers in the AES_KEYRx registers.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Input: Pointer to the buffer containing the saved key registers to
- * write back in the CRYP hardware block.
- * @param KeySize: Indicates the key size (128 or 256 bits)
- * @retval None
- */
- void HAL_CRYPEx_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint32_t KeySize)
- {
- uint32_t keyaddr = (uint32_t)Input;
-
- if (KeySize == CRYP_KEYSIZE_256B)
- {
- hcryp->Instance->KEYR7 = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->KEYR6 = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->KEYR5 = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->KEYR4 = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- }
-
- hcryp->Instance->KEYR3 = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->KEYR2 = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->KEYR1 = __REV(*(uint32_t*)(keyaddr));
- keyaddr+=4U;
- hcryp->Instance->KEYR0 = __REV(*(uint32_t*)(keyaddr));
- }
-
-
- /**
- * @brief In case of message GCM/GMAC or CMAC processing suspension, read the Control Register.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Output: Pointer to the buffer containing the saved Control Register.
- * @note This values has to be stored for reuse by writing back the AES_CR register
- * as soon as the interrupted processing has to be resumed.
- * @retval None
- */
- void HAL_CRYPEx_Read_ControlRegister(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
- {
- *(uint32_t*)(Output) = hcryp->Instance->CR;
- }
-
- /**
- * @brief In case of message GCM/GMAC or CMAC processing resumption, rewrite the Control
- * Registers in the AES_CR register.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Input: Pointer to the buffer containing the saved Control Register to
- * write back in the CRYP hardware block.
- * @retval None
- */
- void HAL_CRYPEx_Write_ControlRegister(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
- {
- hcryp->Instance->CR = *(uint32_t*)(Input);
- /* At the same time, set handle state back to READY to be able to resume the AES calculations
- without the processing APIs returning HAL_BUSY when called. */
- hcryp->State = HAL_CRYP_STATE_READY;
- }
-
- /**
- * @brief Request CRYP processing suspension when in polling or interruption mode.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @note Set the handle field SuspendRequest to the appropriate value so that
- * the on-going CRYP processing is suspended as soon as the required
- * conditions are met.
- * @note It is advised not to suspend the CRYP processing when the DMA controller
- * is managing the data transfer
- * @retval None
- */
- void HAL_CRYPEx_ProcessSuspend(CRYP_HandleTypeDef *hcryp)
- {
- /* Set Handle Suspend Request field */
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND;
- }
-
- /**
- * @}
- */
-
- /**
- * @}
- */
-
- /** @addtogroup CRYPEx_Private_Functions
- * @{
- */
-
- /**
- * @brief DMA CRYP Input Data process complete callback
- * for GCM, GMAC or CMAC chainging modes.
- * @note Specific setting of hcryp fields are required only
- * in the case of header phase where no output data DMA
- * transfer is on-going (only input data transfer is enabled
- * in such a case).
- * @param hdma: DMA handle.
- * @retval None
- */
- static void CRYP_GCMCMAC_DMAInCplt(DMA_HandleTypeDef *hdma)
- {
- uint32_t difflength = 0U;
-
- CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
-
- /* Disable the DMA transfer for input request */
- CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
-
- if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
- {
-
- if (hcryp->CrypInCount != 0U)
- {
- /* Last block is now entered in polling mode, no actual gain in resorting to DMA */
- difflength = hcryp->CrypInCount;
- hcryp->CrypInCount = 0U;
-
- CRYP_Padding(hcryp, difflength, CRYP_POLLING_OFF);
- }
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Mark that the header phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
- }
- /* CCF flag indicating header phase AES processing completion
- will be checked at the start of the next phase:
- - payload phase (GCM or CCM when applicable)
- - final phase (GMAC or CMAC).
- This allows to avoid the Wait on Flag within the IRQ handling. */
-
- /* Call input data transfer complete callback */
- HAL_CRYP_InCpltCallback(hcryp);
- }
-
- /**
- * @brief DMA CRYP Output Data process complete callback
- * for GCM, GMAC or CMAC chainging modes.
- * @note This callback is called only in the payload phase.
- * @param hdma: DMA handle.
- * @retval None
- */
- static void CRYP_GCMCMAC_DMAOutCplt(DMA_HandleTypeDef *hdma)
- {
- uint32_t difflength = 0U;
- CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
-
- /* Disable the DMA transfer for output request */
- CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
-
- /* Initiate additional transfer to wrap-up data feeding to the IP */
- if (hcryp->CrypInCount != 0U)
- {
- /* Last block is now entered in polling mode, no actual gain in resorting to DMA */
- difflength = hcryp->CrypInCount;
- hcryp->CrypInCount = 0U;
-
- CRYP_Padding(hcryp, difflength, CRYP_POLLING_ON);
- }
-
- /* Change the CRYP state to ready */
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Mark that the payload phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;
-
- /* Call output data transfer complete callback */
- HAL_CRYP_OutCpltCallback(hcryp);
- }
-
- /**
- * @brief DMA CRYP communication error callback
- * for GCM, GMAC or CMAC chainging modes.
- * @param hdma: DMA handle
- * @retval None
- */
- static void CRYP_GCMCMAC_DMAError(DMA_HandleTypeDef *hdma)
- {
- CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
-
- hcryp->State= HAL_CRYP_STATE_ERROR;
- hcryp->ErrorCode |= HAL_CRYP_DMA_ERROR;
- HAL_CRYP_ErrorCallback(hcryp);
- /* Clear Error Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_ERR_CLEAR);
- }
-
- /**
- * @brief Handle CRYP block input/output data handling under interruption
- * for GCM, GMAC or CMAC chaining modes.
- * @note The function is called under interruption only, once
- * interruptions have been enabled by HAL_CRYPEx_AES_Auth_IT().
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module
- * @retval HAL status
- */
- HAL_StatusTypeDef CRYP_AES_Auth_IT(CRYP_HandleTypeDef *hcryp)
- {
- uint32_t inputaddr = 0x0U;
- uint32_t outputaddr = 0x0U;
- uint32_t index = 0x0U;
- uint32_t addhoc_process = 0U;
- uint32_t difflength = 0U;
- uint32_t difflengthmod4 = 0U;
- uint32_t mask[3] = {0x0FFU, 0x0FFFFU, 0x0FFFFFFU};
- uint32_t intermediate_data[4U] = {0U};
-
- if(hcryp->State == HAL_CRYP_STATE_BUSY)
- {
- /*===========================*/
- /* GCM/GMAC(/CCM) init phase */
- /*===========================*/
- if (hcryp->Init.GCMCMACPhase == CRYP_INIT_PHASE)
- {
- /* Clear Computation Complete Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- /* Disable Computation Complete Flag and Errors Interrupts */
- __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Mark that the initialization phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
- /* Call computation complete callback */
- HAL_CRYPEx_ComputationCpltCallback(hcryp);
- return HAL_OK;
- }
- /*=====================================*/
- /* GCM/GMAC or (CCM/)CMAC header phase */
- /*=====================================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
- {
- /* Check if all input header data have been entered */
- if (hcryp->CrypInCount == 0U)
- {
- /* Clear Computation Complete Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- /* Disable Computation Complete Flag and Errors Interrupts */
- __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Mark that the header phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Call computation complete callback */
- HAL_CRYPEx_ComputationCpltCallback(hcryp);
-
- return HAL_OK;
- }
- /* If suspension flag has been raised, suspend processing */
- else if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
- {
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
-
- /* reset SuspendRequest */
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
- /* Disable Computation Complete Flag and Errors Interrupts */
- __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_SUSPENDED;
- /* Mark that the header phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_OK;
- }
- else /* Carry on feeding input data to the CRYP hardware block */
- {
- /* Clear Computation Complete Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- /* Get the last Input data address */
- inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
-
- /* Increment/decrement instance pointer/counter */
- if (hcryp->CrypInCount < 16U)
- {
- difflength = hcryp->CrypInCount;
- hcryp->CrypInCount = 0U;
- addhoc_process = 1U;
- difflengthmod4 = difflength%4U;
- }
- else
- {
- hcryp->pCrypInBuffPtr += 16U;
- hcryp->CrypInCount -= 16U;
- }
-
- #if defined(AES_CR_NPBLB)
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
- #else
- if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
- #endif
- {
- if (hcryp->CrypInCount == hcryp->Init.HeaderSize)
- {
- /* All B blocks will have been entered after the next
- four DINR writing, so point at header buffer for
- the next iteration */
- hcryp->pCrypInBuffPtr = hcryp->Init.Header;
- }
- }
-
- /* Write the Input block in the Data Input register */
- if (addhoc_process == 0U)
- {
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- }
- else
- {
- /* Header remainder has size less than 128 bits */
- /* Enter complete words when possible */
- for(index=0U; index < (difflength/4U); index ++)
- {
- /* Write the Input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- }
- /* Enter incomplete word padded with zeroes if applicable
- (case of header length not a multiple of 32-bits) */
- if (difflengthmod4 != 0U)
- {
- hcryp->Instance->DINR = ((*(uint32_t*)(inputaddr)) & mask[difflengthmod4-1]);
- }
- /* Pad with zero-words to reach 128-bit long block and wrap-up header feeding to the IP */
- for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)
- {
- hcryp->Instance->DINR = 0U;
- }
- }
-
- return HAL_OK;
- }
- }
- /*=======================*/
- /* GCM/CCM payload phase */
- /*=======================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
- {
- /* Get the last output data address */
- outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
-
- /* Specific handling to manage payload size less than 128 bits
- when GCM (or CCM when applicable) encryption or decryption is selected.
- Check here if the last block output data are read */
- #if defined(AES_CR_NPBLB)
- if ((hcryp->CrypOutCount < 16U) && \
- (hcryp->CrypOutCount > 0U))
- #else
- if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) && \
- (hcryp->CrypOutCount < 16U) && \
- (hcryp->CrypOutCount > 0U))
- #endif
- {
- addhoc_process = 1U;
- difflength = hcryp->CrypOutCount;
- difflengthmod4 = difflength%4U;
- hcryp->CrypOutCount = 0U; /* mark that no more output data will be needed */
- /* Retrieve intermediate data */
- for(index=0U; index < 4U; index ++)
- {
- intermediate_data[index] = hcryp->Instance->DOUTR;
- }
- /* Retrieve last words of cyphered data */
- /* First, retrieve complete output words */
- for(index=0U; index < (difflength/4U); index ++)
- {
- *(uint32_t*)(outputaddr) = intermediate_data[index];
- outputaddr+=4U;
- }
- /* Next, retrieve partial output word if applicable;
- at the same time, start masking intermediate data
- with a mask of zeros of same size than the padding
- applied to the last block of payload */
- if (difflengthmod4 != 0U)
- {
- intermediate_data[difflength/4U] &= mask[difflengthmod4-1U];
- *(uint32_t*)(outputaddr) = intermediate_data[difflength/4U];
- }
-
- #if !defined(AES_CR_NPBLB)
- if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
- {
- /* Change again CHMOD configuration to GCM mode */
- __HAL_CRYP_SET_CHAININGMODE(CRYP_CHAINMODE_AES_GCM_GMAC);
-
- /* Select FINAL phase */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_FINAL_PHASE);
-
- /* Before inserting the intermediate data, carry on masking operation
- with a mask of zeros of same size than the padding applied to the last block of payload */
- for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)
- {
- intermediate_data[(difflength+3U)/4U+index] = 0U;
- }
-
- /* Insert intermediate data to trigger an additional DOUTR reading round */
- /* Clear Computation Complete Flag before entering new block */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- for(index=0U; index < 4U; index ++)
- {
- hcryp->Instance->DINR = intermediate_data[index];
- }
- }
- else
- #endif
- {
- /* Payload phase is now over */
- /* Clear Computation Complete Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- /* Disable Computation Complete Flag and Errors Interrupts */
- __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Mark that the payload phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Call computation complete callback */
- HAL_CRYPEx_ComputationCpltCallback(hcryp);
- }
- return HAL_OK;
- }
- else
- {
- if (hcryp->CrypOutCount != 0U)
- {
- /* Usual case (different than GCM/CCM last block < 128 bits ciphering) */
- /* Retrieve the last block available from the CRYP hardware block:
- read the output block from the Data Output Register */
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
-
- /* Increment/decrement instance pointer/counter */
- hcryp->pCrypOutBuffPtr += 16U;
- hcryp->CrypOutCount -= 16U;
- }
- #if !defined(AES_CR_NPBLB)
- else
- {
- /* Software work-around: additional DOUTR reading round to discard the data */
- for(index=0U; index < 4U; index ++)
- {
- intermediate_data[index] = hcryp->Instance->DOUTR;
- }
- }
- #endif
- }
-
- /* Check if all output text has been retrieved */
- if (hcryp->CrypOutCount == 0U)
- {
- #if !defined(AES_CR_NPBLB)
- /* Make sure that software-work around is not running before disabling
- the interruptions (indeed, if software work-around is running, the
- interruptions must not be disabled to allow the additional DOUTR
- reading round */
- if (addhoc_process == 0U)
- #endif
- {
- /* Clear Computation Complete Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- /* Disable Computation Complete Flag and Errors Interrupts */
- __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Mark that the payload phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Call computation complete callback */
- HAL_CRYPEx_ComputationCpltCallback(hcryp);
- }
-
- return HAL_OK;
- }
- /* If suspension flag has been raised, suspend processing */
- else if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
- {
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
-
- /* reset SuspendRequest */
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
- /* Disable Computation Complete Flag and Errors Interrupts */
- __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_SUSPENDED;
- /* Mark that the header phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
-
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- return HAL_OK;
- }
- else /* Output data are still expected, carry on feeding the CRYP
- hardware block with input data */
- {
- /* Clear Computation Complete Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- /* Get the last Input data address */
- inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
-
- /* Usual input data feeding case */
- if (hcryp->CrypInCount < 16U)
- {
- difflength = (uint32_t) (hcryp->CrypInCount);
- difflengthmod4 = difflength%4U;
- hcryp->CrypInCount = 0U;
-
- #if defined(AES_CR_NPBLB)
- /* In case of GCM encryption or CCM decryption, specify the number of padding
- bytes in last block of payload */
- if (((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_GCM_GMAC)
- && (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_ENCRYPT))
- || ((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_CCM_CMAC)
- && (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_DECRYPT)))
- {
- /* Set NPBLB field in writing the number of padding bytes
- for the last block of payload */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 16U - difflength);
- }
- #else
- /* Software workaround applied to GCM encryption only */
- if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
- {
- /* Change the mode configured in CHMOD bits of CR register to select CTR mode */
- __HAL_CRYP_SET_CHAININGMODE(CRYP_CHAINMODE_AES_CTR);
- }
- #endif
-
- /* Insert the last block (which size is inferior to 128 bits) padded with zeroes
- to have a complete block of 128 bits */
- for(index=0U; index < (difflength/4U); index ++)
- {
- /* Write the Input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- }
- /* If required, manage input data size not multiple of 32 bits */
- if (difflengthmod4 != 0U)
- {
- hcryp->Instance->DINR = ((*(uint32_t*)(inputaddr)) & mask[difflengthmod4-1U]);
- }
- /* Wrap-up in padding with zero-words if applicable */
- for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)
- {
- hcryp->Instance->DINR = 0U;
- }
- }
- else
- {
- hcryp->pCrypInBuffPtr += 16U;
- hcryp->CrypInCount -= 16U;
-
- /* Write the Input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- }
-
- return HAL_OK;
- }
- }
- /*====================================*/
- /* GCM/GMAC or (CCM/)CMAC final phase */
- /*====================================*/
- else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
- {
- /* Clear Computation Complete Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
-
- /* Get the last output data address */
- outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
-
- /* Retrieve the last expected data from the CRYP hardware block:
- read the output block from the Data Output Register */
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
-
- /* Disable Computation Complete Flag and Errors Interrupts */
- __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_READY;
- /* Mark that the header phase is over */
- hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
-
- /* Disable the Peripheral */
- __HAL_CRYP_DISABLE();
- /* Process Unlocked */
- __HAL_UNLOCK(hcryp);
-
- /* Call computation complete callback */
- HAL_CRYPEx_ComputationCpltCallback(hcryp);
-
- return HAL_OK;
- }
- else
- {
- /* Clear Computation Complete Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- hcryp->State = HAL_CRYP_STATE_ERROR;
- __HAL_UNLOCK(hcryp);
- return HAL_ERROR;
- }
- }
- else
- {
- return HAL_BUSY;
- }
- }
-
- /**
- * @brief Set the DMA configuration and start the DMA transfer
- * for GCM, GMAC or CMAC chainging modes.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param inputaddr: Address of the Input buffer.
- * @param Size: Size of the Input buffer un bytes, must be a multiple of 16.
- * @param outputaddr: Address of the Output buffer, null pointer when no output DMA stream
- * has to be configured.
- * @retval None
- */
- static void CRYP_GCMCMAC_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
- {
-
- /* Set the input CRYP DMA transfer complete callback */
- hcryp->hdmain->XferCpltCallback = CRYP_GCMCMAC_DMAInCplt;
- /* Set the DMA error callback */
- hcryp->hdmain->XferErrorCallback = CRYP_GCMCMAC_DMAError;
-
- if (outputaddr != 0U)
- {
- /* Set the output CRYP DMA transfer complete callback */
- hcryp->hdmaout->XferCpltCallback = CRYP_GCMCMAC_DMAOutCplt;
- /* Set the DMA error callback */
- hcryp->hdmaout->XferErrorCallback = CRYP_GCMCMAC_DMAError;
- }
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE();
-
- /* Enable the DMA input stream */
- HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4U);
-
- /* Enable the DMA input request */
- SET_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
-
-
- if (outputaddr != 0U)
- {
- /* Enable the DMA output stream */
- HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4U);
-
- /* Enable the DMA output request */
- SET_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
- }
- }
-
- /**
- * @brief Write/read input/output data in polling mode.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Input: Pointer to the Input buffer.
- * @param Ilength: Length of the Input buffer in bytes, must be a multiple of 16.
- * @param Output: Pointer to the returned buffer.
- * @param Timeout: Specify Timeout value.
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout)
- {
- uint32_t index = 0U;
- uint32_t inputaddr = (uint32_t)Input;
- uint32_t outputaddr = (uint32_t)Output;
-
-
- for(index=0U; (index < Ilength); index += 16U)
- {
- /* Write the Input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
-
- /* Wait for CCF flag to be raised */
- if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
-
- /* Read the Output block from the Data Output Register */
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
- outputaddr+=4U;
-
- /* If the suspension flag has been raised and if the processing is not about
- to end, suspend processing */
- if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16U) < Ilength))
- {
- /* Reset SuspendRequest */
- hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
-
- /* Save current reading and writing locations of Input and Output buffers */
- hcryp->pCrypOutBuffPtr = (uint8_t *)outputaddr;
- hcryp->pCrypInBuffPtr = (uint8_t *)inputaddr;
- /* Save the number of bytes that remain to be processed at this point */
- hcryp->CrypInCount = Ilength - (index+16U);
-
- /* Change the CRYP state */
- hcryp->State = HAL_CRYP_STATE_SUSPENDED;
-
- return HAL_OK;
- }
-
- }
- /* Return function status */
- return HAL_OK;
-
- }
-
- /**
- * @brief Read derivative key in polling mode when CRYP hardware block is set
- * in key derivation operating mode (mode 2).
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Output: Pointer to the returned buffer.
- * @param Timeout: Specify Timeout value.
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_ReadKey(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t Timeout)
- {
- uint32_t outputaddr = (uint32_t)Output;
-
- /* Wait for CCF flag to be raised */
- if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- return HAL_TIMEOUT;
- }
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG( CRYP_CCF_CLEAR);
-
- /* Read the derivative key from the AES_KEYRx registers */
- if (hcryp->Init.KeySize == CRYP_KEYSIZE_256B)
- {
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR7);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR6);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR5);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR4);
- outputaddr+=4U;
- }
-
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR3);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR2);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR1);
- outputaddr+=4U;
- *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR0);
-
- /* Return function status */
- return HAL_OK;
- }
-
- /**
- * @brief Set the DMA configuration and start the DMA transfer.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param inputaddr: Address of the Input buffer.
- * @param Size: Size of the Input buffer in bytes, must be a multiple of 16.
- * @param outputaddr: Address of the Output buffer.
- * @retval None
- */
- static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
- {
- /* Set the CRYP DMA transfer complete callback */
- hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
- /* Set the DMA error callback */
- hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
-
- /* Set the CRYP DMA transfer complete callback */
- hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
- /* Set the DMA error callback */
- hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
-
- /* Enable the DMA input stream */
- HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4U);
-
- /* Enable the DMA output stream */
- HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4U);
-
- /* Enable In and Out DMA requests */
- SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));
-
- /* Enable the CRYP peripheral */
- __HAL_CRYP_ENABLE();
- }
-
- /**
- * @brief Handle CRYP hardware block Timeout when waiting for CCF flag to be raised.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Timeout: Timeout duration.
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
- {
- uint32_t tickstart = 0U;
-
- /* Get timeout */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((HAL_GetTick() - tickstart ) > Timeout)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- return HAL_OK;
- }
-
- /**
- * @brief Wait for Busy Flag to be reset during a GCM payload encryption process suspension.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param Timeout: Timeout duration.
- * @retval HAL status
- */
- static HAL_StatusTypeDef CRYP_WaitOnBusyFlagReset(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
- {
- uint32_t tickstart = 0U;
-
- /* Get timeout */
- tickstart = HAL_GetTick();
-
- while(HAL_IS_BIT_SET(hcryp->Instance->SR, AES_SR_BUSY))
- {
- /* Check for the Timeout */
- if(Timeout != HAL_MAX_DELAY)
- {
- if((HAL_GetTick() - tickstart ) > Timeout)
- {
- return HAL_TIMEOUT;
- }
- }
- }
- return HAL_OK;
- }
-
- /**
- * @brief DMA CRYP Input Data process complete callback.
- * @param hdma: DMA handle.
- * @retval None
- */
- static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
- {
- CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
-
- /* Disable the DMA transfer for input request */
- CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
-
- /* Call input data transfer complete callback */
- HAL_CRYP_InCpltCallback(hcryp);
- }
-
- /**
- * @brief DMA CRYP Output Data process complete callback.
- * @param hdma: DMA handle.
- * @retval None
- */
- static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
- {
- CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
-
- /* Disable the DMA transfer for output request */
- CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
-
- /* Disable CRYP */
- __HAL_CRYP_DISABLE();
-
- /* Change the CRYP state to ready */
- hcryp->State = HAL_CRYP_STATE_READY;
-
- /* Call output data transfer complete callback */
- HAL_CRYP_OutCpltCallback(hcryp);
- }
-
- /**
- * @brief DMA CRYP communication error callback.
- * @param hdma: DMA handle.
- * @retval None
- */
- static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
- {
- CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
-
- hcryp->State= HAL_CRYP_STATE_ERROR;
- hcryp->ErrorCode |= HAL_CRYP_DMA_ERROR;
- HAL_CRYP_ErrorCallback(hcryp);
- /* Clear Error Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_ERR_CLEAR);
- }
-
- /**
- * @brief Last header or payload block padding when size is not a multiple of 128 bits.
- * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
- * the configuration information for CRYP module.
- * @param difflength: size remainder after having fed all complete 128-bit blocks.
- * @param polling: specifies whether or not polling on CCF must be done after having
- * entered a complete block.
- * @retval None
- */
- static void CRYP_Padding(CRYP_HandleTypeDef *hcryp, uint32_t difflength, uint32_t polling)
- {
- uint32_t index = 0U;
- uint32_t difflengthmod4 = difflength%4U;
- uint32_t inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
- uint32_t outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
- uint32_t mask[3U] = {0x0FFU, 0x0FFFFU, 0x0FFFFFFU};
- uint32_t intermediate_data[4U] = {0U};
-
- #if defined(AES_CR_NPBLB)
- /* In case of GCM encryption or CCM decryption, specify the number of padding
- bytes in last block of payload */
- if (READ_BIT(hcryp->Instance->CR,AES_CR_GCMPH) == CRYP_PAYLOAD_PHASE)
- {
- if (((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_GCM_GMAC)
- && (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_ENCRYPT))
- || ((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_CCM_CMAC)
- && (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_DECRYPT)))
- {
- /* Set NPBLB field in writing the number of padding bytes
- for the last block of payload */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 16U - difflength);
- }
- }
- #else
- /* Software workaround applied to GCM encryption only */
- if ((hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE) &&
- (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT))
- {
- /* Change the mode configured in CHMOD bits of CR register to select CTR mode */
- __HAL_CRYP_SET_CHAININGMODE(CRYP_CHAINMODE_AES_CTR);
- }
- #endif
-
- /* Wrap-up entering header or payload data */
- /* Enter complete words when possible */
- for(index=0U; index < (difflength/4U); index ++)
- {
- /* Write the Input block in the Data Input register */
- hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
- inputaddr+=4U;
- }
- /* Enter incomplete word padded with zeroes if applicable
- (case of header length not a multiple of 32-bits) */
- if (difflengthmod4 != 0U)
- {
- hcryp->Instance->DINR = ((*(uint32_t*)(inputaddr)) & mask[difflengthmod4-1]);
- }
- /* Pad with zero-words to reach 128-bit long block and wrap-up header feeding to the IP */
- for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)
- {
- hcryp->Instance->DINR = 0U;
- }
-
- if (polling == CRYP_POLLING_ON)
- {
- if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- HAL_CRYP_ErrorCallback(hcryp);
- }
-
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- }
-
- /* if payload */
- if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
- {
-
- /* Retrieve intermediate data */
- for(index=0U; index < 4U; index ++)
- {
- intermediate_data[index] = hcryp->Instance->DOUTR;
- }
- /* Retrieve last words of cyphered data */
- /* First, retrieve complete output words */
- for(index=0U; index < (difflength/4U); index ++)
- {
- *(uint32_t*)(outputaddr) = intermediate_data[index];
- outputaddr+=4U;
- }
- /* Next, retrieve partial output word if applicable;
- at the same time, start masking intermediate data
- with a mask of zeros of same size than the padding
- applied to the last block of payload */
- if (difflengthmod4 != 0U)
- {
- intermediate_data[difflength/4U] &= mask[difflengthmod4-1U];
- *(uint32_t*)(outputaddr) = intermediate_data[difflength/4U];
- }
-
- #if !defined(AES_CR_NPBLB)
- /* Software workaround applied to GCM encryption only,
- applicable for AES IP v2 version (where NPBLB is not defined) */
- if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
- {
- /* Change again CHMOD configuration to GCM mode */
- __HAL_CRYP_SET_CHAININGMODE(CRYP_CHAINMODE_AES_GCM_GMAC);
-
- /* Select FINAL phase */
- MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_FINAL_PHASE);
-
- /* Before inserting the intermediate data, carry on masking operation
- with a mask of zeros of same size than the padding applied to the last block of payload */
- for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)
- {
- intermediate_data[(difflength+3U)/4U+index] = 0U;
- }
- /* Insert intermediate data */
- for(index=0U; index < 4U; index ++)
- {
- hcryp->Instance->DINR = intermediate_data[index];
- }
-
- /* Wait for completion, and read data on DOUT. This data is to discard. */
- if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)
- {
- hcryp->State = HAL_CRYP_STATE_READY;
- __HAL_UNLOCK(hcryp);
- HAL_CRYP_ErrorCallback(hcryp);
- }
-
- /* Read data to discard */
- /* Clear CCF Flag */
- __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
- for(index=0U; index < 4U; index ++)
- {
- intermediate_data[index] = hcryp->Instance->DOUTR;
- }
-
- } /* if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT) */
- #endif /* !defined(AES_CR_NPBLB) */
- } /* if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE) */
-
- }
-
- /**
- * @}
- */
-
- #endif /* AES */
-
- #endif /* HAL_CRYP_MODULE_ENABLED */
- /**
- * @}
- */
-
- /**
- * @}
- */
-
- /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|